
University of California

Los Angeles

Symbolic Execution Algorithms for Test

Generation

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Ru-Gang Xu

2009

c© Copyright by

Ru-Gang Xu

2009

The dissertation of Ru-Gang Xu is approved.

Jens Palsberg

Todd Millstein

Lei He

Rupak Majumdar, Committee Chair

University of California, Los Angeles

2009

ii

For my Family.

iii

Table of Contents

1 Introduction . 1

1.1 Contributions . 6

1.2 Outline . 7

2 Background . 8

2.1 Example . 8

2.2 Definitions . 10

2.3 Symbolic and Concolic Execution 11

2.4 Limitations . 12

2.5 Extensions . 14

3 Symbolic Grammars . 16

3.1 Example . 20

3.2 The CESE Approach . 27

3.3 Experiments . 30

4 Length Abstractions . 41

4.1 Example . 44

4.2 Memory Violation Checking . 51

4.3 Implementation . 53

4.4 Evaluation . 60

4.5 Related Work . 69

iv

5 Reducing Test Inputs with Control and Data Dependencies . . 72

5.1 Definitions . 76

5.2 The FlowTest Algorithm . 77

5.3 Example . 85

5.4 Evaluation . 87

6 Non-Termination . 92

6.1 Example . 93

6.2 Definitions . 100

6.3 Generating Lassos . 102

6.4 Proving Feasibility of Lassos . 104

6.5 Experiences . 116

6.6 Acceleration for NonTerm . 123

References . 130

v

List of Figures

2.1 [Example] h(int x, int y) . 9

2.2 Path explosion: Paths get longer and longer 14

3.1 [Example] Calculator Lexer. 27

3.2 [Example] wuftpd buffer overflow bug. In line 07, rootd in the

comparison with MAXPATHLEN should be !rootd 40

4.1 [Example] Buffer overflow due to off-by-one error in t1; additional

instrumentation in t2 with an assert 44

4.2 [Example] Buffer overflow due to off-by-one error 46

4.3 Memory nodes contain possibly symbolic representations of string

length and size of allocated memory. 53

4.4 Tracking memory for heap and stack allocations, and checking

pointer dereferences. 53

4.5 Tracking memory for string operations. 56

4.6 [Example] Buffer overflow due to arithmetic overflow 59

4.7 [Example] Buffer overflow due to arithmetic overflow 60

4.8 Coverage for Bind 2: Splat-length enumerates 34 unique paths in

Bind 2 with a random string and a symbolic length. Splat-full must

enumerate 210 paths with a symbolic input of 100 bytes. 66

4.9 [Example] WuFTP 1: strcpy at line 07 can overflow 68

5.1 [Example] Many independent inputs: (a) Example test (b) Ex-

ample free . 73

vi

6.1 [Example] Broken binary search 95

6.2 Algorithm NonTerm for testing non-termination. The operator •

adds a transition at the end of a sequence. The functions Choose

and ChooseNext are backtrackable. 124

6.3 Auxiliary function ChooseNext for the nondeterministic selec-

tion of an outgoing transition, a successor location and state. The

function Choose raises the ChoiceFailure exception when ap-

plied on the empty set. We implicitly assume the fixed program

P which determines the possible states s′ and transitions τ 125

6.4 Auxiliary function NonTermLasso for checking non-termination

of linear arithmetic lassos. 125

6.5 Modriaan permission table indexing 126

6.6 Typical permission table generated by mmpt insert 126

6.7 Table state after first call of mmpt insert 126

6.8 Summary of functions called by mmpt insert 127

6.9 Mondriaan insertion code . 128

6.10 Acceleration of the algorithm NonTerm for testing termination.

Lines 18.1—18.11 replace line 18 in Figure 6.2. We unwind the

loop part of terminating lasso without intermediate checks for non-

termination. Recall that the variable s holds the value of the

current program state, which successors are computed during loop

unwinding. 129

vii

List of Tables

3.1 Effect of input size. Length is the maximum size of the in-

put buffer. In the Number of Inputs by Technique column:

Grammar denotes the number of syntactically valid strings, Exh

denotes the number of unique buffers by exhaustive enumeration,

Cute gives the number of inputs generated by Cute , SymStr

gives the number of strings in the symbolic grammar, Cese gives

the number of inputs generated by Cese . Time gives the execu-

tion time for Cese denoted by Cese and the execution time for

Cute denoted by Cute in seconds (s), minutes (m) or hours (h).

Cov shows the branch coverage for both Cute and Cese in the

first 4 rows, but just for Cese in the last two. Cute did not

terminate within 5 hours for those tests so such entries are marked

as n/a. 23

3.2 Coverage: Cese and Manual Testing. LOC is lines of code.

Coverage is the branch coverage – executed branches divided by

total branches. Inputs is the number of inputs generated. Man-

ual Testing Coverage denotes the branch coverage for the de-

velopers’ testcases. n/a denotes we could not find the developers’

testcases. 37

3.3 Coverage: Cute . LOC is lines of code. Coverage is the branch

coverage – executed branches divided by total branches, and In-

puts is the number of inputs generated, for 30 minute Cute runs

and 5 hour Cute runs. 38

viii

3.4 Coverage: Grammar Based Testing and Random Testing. LOC

is lines of code. Coverage is the branch coverage – executed

branches divided by total branches, and Inputs is the number of

inputs generated. 38

3.5 Inputs: Cese and Grammar Based Testing. Height is the max-

imum applications of production rules and Len is the maximum

generated input length for grammar based testing and Cese .

Sym is the maximum number of symbolic constants in Cese inputs. 39

4.1 Experimental Results: Splat bug finding effectiveness. LOC

is lines of code. Prefix is the length of the symbolic prefix in bytes.

Size is the maximum length of the input string in bytes. Buggy

is time spend finding the bug. Fixed is time spent rerunning the

test after fixing the error. t/o means timeout after 2 hours. 61

4.2 Experimental Results: Comparing the length abstraction with

a fully symbolic input string on programs with string manipula-

tions: experiments with length abstraction. Prefix is the length

of the symbolic prefix in bytes. Size is the maximum length of

the input string in bytes. t/o means timeout after 2 hours for the

benchmarks or 24 hours for the case study. Cov is the branch

coverage for the testing fixed programs run until completion or

timeout. 62

ix

4.3 Experimental Results: Comparing the length abstraction with

a fully symbolic input string on programs with string manipula-

tions: fully symbolic. Prefix is the length of the symbolic prefix

in bytes. Size is the maximum length of the input string in bytes.

t/o means timeout after 2 hours for the benchmarks or 24 hours

for the case study. Cov is the branch coverage for the testing fixed

programs run until completion or timeout. 63

5.1 Experimental Results: Comparing FlowTest and Splat . In-

put is the size of the symbolic input buffer in bytes. Blocks is the

number of blocks into which the input was (manually) partitioned.

Cov is branch coverage for both FlowTest and Splat . Paths is

the number of unique paths explored. Time is the time taken up

to a maximum of one hour. 90

x

Acknowledgments

I would like to thank the many people who have encouraged my PhD studies

and made my years at UCLA enjoyable.

First I would like thank my adviser Rupak Majumdar for his many years of

exceptional guidance. I thank him for teaching me the art of research: how to

find problems, solve them creatively and write about them precisely. I would also

like to thank him for his patience and tolerance for my random escapades.

I would also like to thank the many UCLA professors whom I have enjoyed

their classes and opinions: Eddie Kohler, for his systems courses and how to

thoroughly critique a paper; Todd Millstein, for his classes in type systems; Jens

Palsberg, for his insightful and entertaining commentary during our weekly read-

ing groups.

I would also like to thank the many researchers that I have had the privilege

of collaborating with: Ranjit Jhala, for his input on structural invariants, Patrice

Godefroid for introducing me to directed testing and for hosting my stay at Bell

Labs; Alex Groce for his expertise on how random testing is applied to real-world

applications; Gerard Holzmann for hosting my stay at JPL; Andrey Rybalchenko

for lessons in termination/non-termination.

Lastly, I would like to thank all the people in the our lab (TERTL) for mak-

ing my day-to-day life entertaining: Lih Chen, Brian Chin, Petros Efstathopou-

los, Mike Emmi, Jeff Fischer, Chris Frost, Pierre Ganty, Shant Hovsepian, Ja-

cob Lacouture, Nikitas Liogkas, Mike Mammarella, Dan Marino, Shane Mark-

strum, Manav Mital, Rob Nelson, Milan Stanojevic, Steve VanDeBogart, and

Alex Warth.

xi

Vita

2001 B.S. (Electrical Computer Engineering), Carnegie Mellon,
Pittsburgh, Pennsylvania.

2004 M.S. (Computer Science), University of California, Los Angeles,
California.

Publications

R. Majumdar and R. Xu. Reducing Test Inputs Using Information Partitions,
CAV, June 2009.

J. Andrews, A. Groce, M. Weston and R. Xu. Directed Test Generation Using
Symbolic Grammars, ASE, September 2008.

R. Xu, P. Godefroid and R. Majumdar. Testing for Buffer Overeflows with Length
Abstraction, ISSTA, July 2008.

A. Gupta, T. Henzinger, R. Majumdar, A. Rybalchenko and R. Xu. Proving
Non-Termination, POPL, January 2008.

R. Majumdar and R. Xu. Directed Test Generation Using Symbolic Grammars,
ASE, November 2007.

R. Jhala, R. Majumdar and R. Xu. State of the Union: Type Inference Via Craig
Interpolation, TACAS, March 2007.

R. Jhala, R. Majumdar and R. Xu. Structural Invariants, SAS, August 2006.

xii

Abstract of the Dissertation

Symbolic Execution Algorithms for Test
Generation

by

Ru-Gang Xu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2009

Professor Rupak Majumdar, Chair

Correctness of software has become increasingly important and difficult as pro-

grams become more complicated and have more impact on our day-to-day lives.

There are two approaches to ensure the correctness of software. Testing is the ap-

proach widely used in industry. Today, testing is tedious, expensive and prone to

leave errors undetected. The other approach is to verify the correctness or guar-

antee the proper behavior of software through static analysis and model checking.

However, this approach does not scale well, are restricted to simple properties

or overwhelm the user with many false alarms. In the recent years, testing and

verification have come closer together. Directed testing or concolic testing gener-

ates tests from constraints generated through both symbolic and real executions.

However, the basic concolic execution algorithms do not scale to larger programs

and cannot identify or seek out many types of bugs. This dissertation extends the

basic concolic execution algorithm to scale to larger programs and more complex

properties.

Specifically, this dissertation presents four symbolic execution algorithms that

xiii

automatically and systematically generate tests. These algorithms reduce the in-

put space of automated testing and find different classes of errors. Symbolic

grammars are introduced to generate orders of magnitude less input strings with-

out sacrificing coverage. Symmetry reduces redundant tests by showing that some

parts of the input are independent from other parts. Ideas in Liveness allow test

generation to find errors leading to non-termination. Abstraction allows larger in-

puts to be generated that lead to memory safety violations and thus stop security

holes before they happen.

This work has resulted in a tool that generates tests for C programs called

Splat . Splat was used on a wide variety of open-source programs that com-

pare these techniques to conventional industry-wide practices and-state of-the-art

research. Preliminary studies show that these ideas are effective in finding new

bugs quicker and can explore more of the program than other approaches.

xiv

CHAPTER 1

Introduction

The correctness of software has become extremely important. Testing has been

the primary way that software is checked for correctness – costing billions of

dollars from the software industry and accounting for about 50% the cost of

software development [Mye79]. However, testing is never completely adequate

thus leading to defects that cost the US economy about $60 billion every year

[Nis02].

Two factors that contribute to the high cost of testing are the lack of automa-

tion and precise measurements of success. Although the current industry best

practice is to attempt to test every aspect of a software system, testing requires

substantial resources and can rarely check all possible execution scenarios. First,

testcases need to be manually specified, that is the input and expected output

must be defined. Also, test harnesses need to be created for software components.

Then, tests must be repeatedly run as the software evolves. However, even when

a large dedicated team of testers runs millions of tests, errors still remain in the

final product [MSO06, CVE03]. It is difficult for the tester to know whether he

is finished or measure how close he is to finishing. Because testing is unlikely to

explore all the possible scenarios that the software may encounter upon release,

the tester can only create tests based on the most likely usage of the software or

on intuition where a bug may lie. In reality, testing is considered finished as soon

as resources have run out, leaving no guarantee of correctness. This approach

1

often results in undetected errors.

On the other hand, verification gives a guarantee of correctness. Verification

ensures the absence of certain property violations by proving such violations can

never happen. Certain verification techniques such as model checking and static

analysis are fully automatic, requiring little or no human intervention for a wide

class of properties such as memory safety, the absence of runtime exceptions

and termination. Unfortunately, verification techniques are difficult to use on

complex software especially in the presence of dynamic memory allocation and

data structures. Automatic techniques lead to false warnings, a warning that does

not point to a real property violation. These false warnings must be manually

filtered from the real bugs and can sometimes become overwhelming.

Currently the high cost of verification has made verification accessible to only

the most safety critical software such embedded control systems or air traffic

control and not to most commercial software. Relaxing correctness and focusing

more on bug finding allow verification techniques to be applied on larger more

complex software within a reasonable cost. This dissertation is a step toward

the next generation of practical easy to use directed testing tools that can take

the source code of a program and automatically generate test cases that cover a

significant portion of the program and find bugs. Novel algorithms are introduced

that balance the trade-off between cost and soundness by finding interesting

inputs that explore a wider variety of behaviors instead of proving correctness.

Because all algorithms presented will generate inputs, the results are easy to

interpret for any programmer: a bug found can be examined by just running to

program with the input.

One recently introduced approach toward this is directed testing or concolic

execution where test inputs are generated from constraints derived from both

2

symbolic and real executions [GKS05, SMA05, CGP06]. Unfortunately, simply

enumerating paths by solving constraints is not enough. Pure directed testing

algorithms do not steer the execution toward bugs and can become lost – not

finding any new bugs or improving code coverage after hundreds of hours.

This dissertation tries to remedy the two main short-comings of the stan-

dard concolic execution algorithm: state explosion and bug identification. This

dissertation presents new symbolic execution algorithms for test generation that

concolic execution more practical. All algorithms presented were implemented

and applied to several open-source programs through a tool called Splat that

automatically generates test inputs and systematically explores the input space

while checking for certain property violations such as non-termination, runtime

exceptions and unsafe memory accesses. Experiments show that these algorithms

lead to greater code coverage and can find new bugs where the previous state-of-

the-art could not.

Enumeration. First presented is an algorithm that combines exhaustive enu-

meration of test inputs from a structured domain with symbolic execution driven

test generation, targeting programs whose valid inputs are determined by some

context free grammar. The motivation is that concolic execution tools get stuck in

the parser – endlessly generating malformed strings that just get thrown away. In-

stead of exploring paths in the program, the tool is just exploring the many paths

that lead to a parse error. One possible solution is to enumerate the grammar of

valid inputs; unfortunately, that also blows up because the number of valid strings

greatly increase as the string length increases. To remedy this, the concrete in-

put syntax is abstracted with symbolic grammars, where some original tokens

are replaced with symbolic constants. This reduces the set of input strings that

must be enumerated exhaustively. For each enumerated input string, which may

3

contain symbolic constants, symbolic execution based test generation instantiates

the constants based on program execution paths. The “template” generated by

enumerating valid strings reduces the burden on the symbolic execution to gen-

erate syntactically valid inputs while helping to exercise interesting code paths.

Together, symbolic grammars provide a link between exhaustive enumeration of

valid inputs and execution-directed symbolic test generation. Preliminary experi-

ments with Splat show that the combination achieves better coverage than both

pure enumerative test generation and pure directed symbolic test generation, in

orders of magnitude less time and generated inputs.

Abstraction. Second, the dissertation discusses how to use abstraction to au-

tomatically generate inputs that lead to memory safety violations in C programs.

Memory safety violations are notoriously difficult to find because they have a large

input space. The solution is instead of representing the entire contents of an in-

put buffer symbolically, Splat can track only a prefix of the buffer symbolically

and a symbolic length that may exceed the size of the symbolic prefix. The use of

symbolic buffer lengths makes it possible to compactly summarize the behavior of

standard buffer manipulation functions, such as string library functions, leading

to a more scalable search for possible memory errors. While reasoning only about

prefixes of buffer contents may cause the search to be incomplete, experiments

demonstrate that the symbolic length abstraction is both scalable and sufficient

to uncover many real buffer overflows in C programs. On a set of benchmarks

developed independently to evaluate buffer overflow checkers, Splat was able to

detect buffer overflows quickly, sometimes several orders of magnitude faster than

other approaches. Also, Splat was able to find two previously-unknown buffer

overflows in a heavily-tested storage-system implementation.

4

Input partitions. Next, we investigate how to apply symmetry to reduce the

number of paths explored for programs with independent inputs. Even though

different combinations of inputs result in different paths, they do not result in

new behaviors. Instead of tracking all bytes in the input buffer, the input is

partitioned into “non-interfering” blocks such that symbolically solving for each

input block while keeping all other blocks fixed to concrete values. Testing pieces

in isolation is then shown to be able to find the same set of assertion violations as

using the complete input buffer by proving there is no information flow between

the input pieces. This can greatly reduce the number of paths to be solved (in the

best case, from exponentially many to linearly many in the number of inputs).

We present an algorithm that combines test input generation by concolic exe-

cution with dynamic computation and maintenance of information flow between

inputs. Our algorithm iteratively constructs a partition of the inputs, starting

with the finest (all inputs separate) and merging blocks if a dependency is de-

tected between variables in distinct input blocks during test generation. Instead

of exploring all paths of the program, our algorithm separately explores paths

for each block (while fixing variables in other blocks to random values). In the

end, the algorithm outputs an input partition and a set of test inputs such that

(a) inputs in different blocks do not have any dependencies between them, and

(b) the set of tests provides equivalent coverage with respect to finding assertion

violations as full concolic execution.

Liveness. Lastly, we show how to use constraint solving techniques to find

liveness errors, specifically inputs leading to infinite execution. These infinite

executions are finitely represented with lassos, paths that end in a loop. We

show how to find these lassos using concolic execution and how to prove that

some of these lassos can lead to non-termination.

5

1.1 Contributions

Algorithms in this dissertation have been implemented in Splat – a tool that

automatically generates inputs for C programs using symbolic execution and

constraint solving [GKS05, SMA05, CGP06]. Splat scales to realistic programs

and large input spaces using enumeration [MX07], abstraction [XMG08], and

symmetry [MX09]. Splat also allows the detection of inputs leading to non-

termination [GHM08] and a wide range of memory safety properties [XMG08].

Research contributions in Splat are:

1. Symbolic grammars describe input strings that satisfy the grammar describ-

ing valid inputs but with some symbolic variables [MX07]. Enumerating

the symbolic grammars requires orders of magnitude less strings than the

input grammar without missing bugs.

2. Describing an input string by a symbolic prefix and a symbolic length allows

the generation of larger input strings that, although unsound, finds many

memory safety bugs in real code [XMG08].

3. Input partitions reduces the number of paths needed to be tested by par-

titioning the input into non-interfering blocks and testing each block in

isolation [MX09].

4. Non-termination proofs find that certain executions infinitely loop

[GHM08]. Test generation finds candidate executions that may lead to

non-termination. Some of these executions can be proven to lead to non-

termination.

Each feature is evaluated by testing open-source C programs. The effective-

ness of bug finding, code coverage and execution times are compared with other

6

state of the art techniques.

1.2 Outline

Chapter 2 provides some preliminary definitions that are used throughout the

dissertation and an overview of concolic execution and its limitations. Chap-

ter 3 introduces symbolic grammars and their use in generating structured in-

puts. Chapter 4 shows how abstraction can be used to find memory safety vi-

olations resulting from large strings. Chapter 5 shows how Splat can exploit

non-interference to reduce the number of inputs explored. Chapter 6 shows how

Splat can find bugs leading to non-termination.

7

CHAPTER 2

Background

Directed testing or concolic execution provides a systematic way of testing soft-

ware where the only manual specification required is the size of the input

[GKS05, SMA05, CGP06]. concolic execution is closely related to symbolic ex-

ecution [Kin76, Cla76], where the program is executed on symbolic inputs, and

satisfying assignments to constraints collected along a program path lead to new

test inputs. Concolic execution combine symbolic execution with concrete ran-

dom execution of the code. The concrete execution allows the symbolic execu-

tion to simplify constraints based on the concrete values along the run. Symbolic

execution based test generation is directed: test inputs are generated by system-

atically exploring program paths at the symbolic level, and these inputs are then

guaranteed to execute along pre-determined paths. Thus, the set of test inputs

generated are not redundant: each leads to a different program path.

2.1 Example

Suppose the function h needs to be tested:

h(int x, int y) contains an error for some input as seen in line 04. Enu-

merating all 264 or 1.8∗1019 inputs is infeasible. However, enumerating all inputs

is not necessary because many inputs result in the same execution path. In fact,

there are only three unique paths in h and enumerating an input representing

8

00 int f(int x) {return 2 * x;}

01 int h(int x, int y) {

02 if (x != y)

03 if (f(x) == x + 10)

04 error();

05 return 0;

06 }

Figure 2.1: [Example] h(int x, int y)

each path would be sufficient to completely test h.

Concolic execution automatically finds each input that tests a new path. Sup-

pose the first test is randomly chosen to be (x = 3434, y = 2321). This results in

an execution that enters the conditional in line 02 but does not enter the condi-

tional in line 03. As the test is executed, predicates representing each conditional

taken or not taken is recorded as the path constraint. For the first run, the path

constraint is ¬(x = y)∧¬(2∗x = x+10). To generate a new input, some predicate

in the path constraint is negated. For a depth first search of all paths, the last

predicate that had not been negated is negated and the solution of the constraint

system with this negation provides the input going to that different path. In this

example, the last predicate negated results in ¬(x = y) ∧ (2 ∗ x = x+ 10). One

solution to these constraints is (x = 10, y = 2321), leading to the error in line 04.

Suppose, the user decides error() is no longer an error and continues the search.

The predicate 2 ∗ x = x + 10 is not negated because it already was. The next

input is a solution for (x = y), leading to a possible solution of (x = 10, y = 10).

Now the algorithm terminates because all predicates have already been negated.

9

2.2 Definitions

We introduce a simple imperative language with integer-valued variables that

will be used to explain concolic execution and other algorithms presented in

this dissertation. We represent programs as control flow graphs (CFG) P =

(X,X0,L, ℓ0, op, E) consisting of (1) a set of variables X, with a subset X0 ⊆ X

of input variables, (2) a set of control locations (or program counters) L which

include a special start location ℓ0 ∈ L, (3) a function op labeling each location

ℓ ∈ L with one of the following basic operations:

1. a termination statement halt,

2. an assignment x := e, where x ∈ X and e is an arithmetic expression over

X,

3. a conditional if(x)then ℓ′ else ℓ′′, where x ∈ X and ℓ′, ℓ′′ are locations in

L,

and (4) a set of directed edges E ⊆ L × L defined as follows. The set of edges

E is the smallest set such that (1) every node ℓ where op(ℓ) is an assignment

statement has exactly one node ℓ′ with (ℓ, ℓ′) ∈ E, and (2) every node ℓ such

that op(ℓ) is if(x)then ℓ′ else ℓ′′ has two edges (ℓ, ℓ′) and (ℓ, ℓ′′) in E. For a

location ℓ ∈ L where op(ℓ) is an assignment operation, we write N (ℓ) for its

unique neighbor.

Thus, the locations of a CFG correspond to program locations with associated

commands, and edges correspond to control flow from one operation to the next.

In the following, we assume that there is exactly one node ℓhalt in the CFG with

op(ℓhalt) = halt. A path is a sequence of locations ℓ1, ℓ2 . . . ℓn in the CFG. A

location ℓ ∈ L is reachable from ℓ′ ∈ L if there is a path ℓ′ . . . ℓ in the CFG. We

10

assume that every node in L is reachable from ℓ0 and ℓhalt is reachable from every

node.

Semantics. The concrete semantics of the program is given using a memory

that maps variables in X to values. For a memory M , we write M [x 7→ v] for the

memory mapping x to v and every other variable y ∈ X \ {x} to M(y). For an

expression e, we denote by M(e) the value obtained by evaluating e where each

variable x occurring in e is replaced by the value M(x).

Execution starts from a memory M0 containing initial values for input vari-

ables in X0 and constant default values for variables in X \ X0, at the entry

location ℓ0. Each operation updates the memory and the control location. Sup-

pose the current location is ℓ and the current memory is M . If op(ℓ) is x := e,

then the new location is N (ℓ) and the new memory is M [x 7→ M(e)]. If op(ℓ)

is if(x)then ℓ′ else ℓ′′ and M(x) = 0, then the new location is ℓ′′ and the new

memory is again M . On the other hand, if M(x) 6= 0 then the new location is

ℓ′ and the new memory remains M . If op(ℓ) is halt, the program terminates.

Execution of the program starting from a memory M0 defines a path in the CFG

in a natural way. A path is executable if it is the path corresponding to program

execution from some initial memory M0.

2.3 Symbolic and Concolic Execution

We shall also evaluate programs symbolically. This is shown as Algorithm 2 and

1. Symbolic execution is performed using a symbolic memory µ, which maps

variables in X to symbolic expressions over a set of symbolic constants, and a

path constraint ξ, which collects predicates over symbolic constants along the

execution path.

11

Execution proceeds as in the concrete case, starting at ℓ0 with an initial

symbolic memory µ which maps each variable x inX0 to a fresh symbolic constant

αx and each variable y ∈ X \ X0 to some default constant value, and the path

constraint true (Algorithm 1 lines 1–4). To simply the algorithm, ξ is represented

as a stack. For an assignment x := e, the symbolic memory µ is updated to

µ[x 7→ µ(e)], where µ(e) denotes the symbolic expression obtained by evaluating

e using µ and µ[x 7→ v] denotes the symbolic memory that updates µ by setting

x to v (lines 7–9). The control location is updated to N (ℓ). For a conditional

if(x)then ℓ′ else ℓ′′, there is a choice in updating the control location. If the new

control location is chosen to be ℓ′, the path constraint is updated to ξ∧µ(x) 6= 0,

and if the new control location is chosen to be ℓ′′, the path constraint is updated

to ξ ∧ µ(x) = 0 (lines 10–16). In each case, the new symbolic memory is still µ.

Symbolic execution terminates at halt (line 5).

For each execution path, every satisfying assignment to the path constraint

ξ gives values to the input variables in X0 that guarantee the concrete execution

proceeds along this path. Given a path constraint ξ, we can have a new path if

we can find a solution to a new path constraint where some predicate p is negated

in ξ all predicates prior to p are removed. Algorithm 2 shows how to generate all

paths by negating, solving and executing each predicate in depth first order.

Concolic execution [GKS05, SMA05] is a variant on symbolic execution in

which the program is run simultaneously with concrete and symbolic values.

2.4 Limitations

Concolic execution offers a win over enumeration if one path can represent many

inputs, in this example: 3 paths for 1.8∗1019 inputs. However, concolic execution

12

Algorithm 1: Execute

Input: Program P = (X,X0,L, ℓ0, op, E), Input input
Result: Path constraint ξ
for x ∈ X do1

M(x) := input(x); if x ∈ X0 then µ(x) := αx;2

end3

ξ := emptyStack; ℓ := ℓ0;4

while op(ℓ) 6= halt do5

switch op(ℓ) do6

case l := e7

M := M [l 7→M(e)]; µ := µ[l 7→ µ(e)]; ℓ := N (ℓ);8

end9

case if(x)then ℓ′ else ℓ′′10

if M(x) = 0 then11

ξ := push(µ(x) = 0, ξ); ℓ := ℓ′′;12

else13

ξ := push(µ(e) 6= 0, ξ); ℓ := ℓ′;14

15

end16

end17

end18

return ξ;19

has substantially more overhead then concretely executing the program due to

the symbolic execution and constraint solving. It is clear that for programs

where paths represent unique inputs, there is no gain in using concolic execution.

In more complex programs, there exists a large number of paths that prevent

directed testing to finish within any reasonable testing budget. Programs that

take a structured input, an input that has to satisfy some specification, have

parsing code that contains a unique path for each parse tree. Programs using

inputs as a loop guard produce a new path at each iteration of the loop. For

example, directed testing must enumerate all 231 unique paths in function g(int

x) in Figure 2.2.

As paths get longer and as the number of symbolic variables increase, con-

13

Algorithm 2: Generate

Input: Program P , partition Π, block I ∈ Π, flow map flow
Input: input input , last explored branch last
(ξ,flow) := Execute(P,Π, I,flow , input);1

index := Length(ξ) − 1;2

while not empty(ξ) ∧ index 6= last do3

p := pop(ξ);4

if ξ ∧ ¬p is satisfiable then5

input := Solve(ξ,¬p);6

flow := Generate(P,Π, I,flow , input , index);7

index := index − 1;8

end9

return flow ;10

00 int g{int x} {

01 int ret = 0;

02 while (x > 0) {

03 ret += x;

04 }

05 return ret;

06 }

Figure 2.2: Path explosion: Paths get longer and longer

straint solving takes longer. Combined with the large number of paths in more

complex programs, directed testing fails to scale.

2.5 Extensions

Few extensions of concolic execution have been proposed to tackle the path ex-

plosion problem. Concolic execution can be performed compositionally where

function summaries — pre- and post-conditions describing the function call, are

generated and used during concolic execution [God07]. Demand-driven composi-

tional testing uses the least amount of intra-procedural paths to reach a specified

14

point in the program [AGT08]. RWSet removes paths that have the same side-

effects as a previously explored path [BCE08].

15

CHAPTER 3

Symbolic Grammars

Automatic and comprehensive test input generation for large software programs

where valid inputs to the system come from some structured domain is an im-

portant problem. Examples of such software systems are compilers or command

processors, which accept inputs that form valid strings in some context free lan-

guage, or business applications which process input described by some XML

schema.

There are two predominant ways to automatically generate test inputs for such

systems: enumerative and symbolic. In enumerative test generation, all inputs

satisfying a certain input specification (for example, a grammar for a parser or

an XML schema) are enumerated (up to some bounded size), and the program

is executed on all the inputs [CL05, LS06]. As we have discussed in previous

chapter, symbolic test generation [Cla76, Kin76, VPK04, BCH04, GKS05], the

program is executed on symbolic rather than (or in addition to [GKS05, SMA05])

concrete inputs, and a set of constraints on the symbolic inputs is collected along

an execution trace. A constraint solver is then used to generate test inputs that

satisfy the symbolic constraints. The resulting test inputs are guaranteed to force

the program execution along the path chosen by the symbolic execution.

Specification-based exhaustive enumeration is guaranteed to provide valid in-

puts to the program. This ensures that the application goes beyond the parsing

and input sanitizing phase and executes along deeper paths. Unfortunately, ex-

16

haustive enumeration does not distinguish between different observable behaviors

produced by the inputs. Thus, a large set of redundant tests may be generated,

each of which has exactly the same execution behavior on the program. Also,

for almost all nontrivial programs, the set of possible valid inputs is too large

to completely enumerate, and in practice, one explores a random sampling of

the input space, through some form of random or biased test input generation.

This is not comprehensive: very often, the probability that random testing ex-

ercises program corner cases, where many bugs lurk, is astronomically small. In

summary, specification-based exhaustive enumeration, while selective, in that it

generates test inputs from the program’s expected input domain, is not directed,

in that the actual execution paths are not considered in the test generation.

In contrast, test generation based on symbolic or concolic execution is directed,

exploiting path equivalences, and systematically exploring new paths. However,

most symbolic execution implementations are not selective: they start with an

unstructured buffer of symbolic variables, and hope to extract the structure of the

input by looking at the tests executed along the path. While theoretically com-

plete, symbolic techniques are expensive, and ultimately limited by the capacity

of the symbolic engine. In practice, a symbolic test generator for a compiler stays

“forever” within the many paths of the parser, generating incorrect inputs one

after another, but exploring only novel parse error paths!

A test generation algorithm can combine the advantages of selective enumera-

tive test generation and directed testing. However, there is a tension between the

two techniques. For any single input, program execution is orders of magnitude

faster than symbolic exploration, hence one should push as much work to enu-

merative testing as possible. On the other hand, the number of possible inputs to

be enumerated is astronomical, so one should push as much work as possible to

17

the symbolic engine to explore only non-redundant computations. The solution

is the use of symbolic grammars that balance the two competing requirements.

Our test generation algorithm (1) transforms a grammar specifying input format

into a symbolic grammar, (2) enumerates the set of valid strings in the sym-

bolic grammar using enumerative techniques, and (3) runs directed testing on

the symbolic strings enumerated.

Take a grammar G for arithmetic expressions (numbers, or the sum or differ-

ence of two arithmetic expressions):

exp ::= num | exp + exp | exp− exp

num ::= [0 − 9]

For an input of size 3, enumerative techniques will generate all 210 valid strings

of the form 0, . . ., 9 (for integer constants), and 0+0, 0−0, 0+1, 0−1, . . ., 9+9,

9− 9. Symbolic techniques will start with three symbolic variables, and generate

a large set of invalid inputs (e.g., “+00”, “+–”) to explore (the large number of)

character-by-character comparisons in the lexer and error paths in the parser. In

contrast, a symbolic grammar G′ for G can replace the production of num with

num ::= α

where α is a symbolic constant whose value is instantiated during symbolic explo-

ration based on comparisons in the code. With this transformation, the number

of possible valid strings of length 3 are α, α+α, and α−α. At this point, symbolic

execution is run on the three inputs where symbolic constants are instantiated

with respect to unique program paths.

Symbolic grammars enable several orders-of-magnitude decrease in the num-

18

ber of strings to be enumerated, and for each enumerated string, the symbolic

constants generate enough non-determinism for the symbolic test generation to

explore all paths of the program. Consequently, the use of symbolic grammars

lets us profitably combine enumerative and symbolic test generation techniques

to get a combined test generation algorithm whose performance should be much

better than either alone. We have implemented Cese (Concolic Execution with

Selective Enumeration), a tool that implements test generation using symbolic

grammars for C programs that specify their input syntax using lex and yacc, on

top of the Yagg string generator [CL05] and Cute concolic execution [SMA05]

tools.

We have applied our implementation to generate test inputs for a set of open

source programs. In our initial experiments on a calculator for arithmetic ex-

pressions (used as an example application in many yacc tutorials), Cese out-

performed both strictly enumerative and strictly symbolic test generation. The

symbolic grammar had two orders of magnitude fewer strings to be enumerated.

With symbolic grammar-based enumeration, Cese explored two orders of mag-

nitude fewer inputs than Cute for input buffers of size four, and could finish

enumeration for larger buffers when Cute could not finish within 5 hours. Sim-

ilar trends were borne out in other experiments. Overall, Cese was able to

achieve an average 10% more branch coverage than Cute in a 30 minute testing

budget. Further, limit experiments where Cute was run for 5 hours showed that

the branch coverage obtained by Cute saturated (i.e., , did not significantly

improve over the coverage obtained in 30 minutes), and remained approximately

9% less than Cese running for 30 minutes. Further, for the programs in our

suite that came with manual testcases, we saw that branch coverage obtained by

Cese was within 10% of coverage with manual tests. This difference could be

attributed to program behaviors that only manifest with larger input buffers. We

19

find this impressive: in spite of enumerating very small input buffers, Cese was

able to come within the same ballpark as carefully crafted manual tests. In com-

parison to pure enumerative (grammar-based) input generation, Cese generated

several orders of magnitude fewer inputs, and achieved slightly better (6% better)

coverage under the same testing budget. Since generated tests are often added

to regression suites, the many fewer tests generated by Cese (and consequently,

the much lower test execution time) indicates a win for Cese . We also used

Cese to check for buffer overflows, in particular, to check if a known buffer over-

flow in the path resolution function of the wuftpd FTP server can be detected.

Cese found the bug in four minutes, whereas Cute timed out without finding

the bug in 13 hours. The specific configuration that leads to this bug requires a

buffer of over 1000 bytes, making it outside the scope of exhaustive enumeration,

and making the odds against random testing astronomically high. These initial

results are clearly indicative that Cese is a scalable and useful technique for

automated comprehensive test generation, and can match or outperform several

known test input generation algorithms.

3.1 Example

We introduce and motivate our technique by testing a calculator example

SimpleCalc that is seen in many tutorials for yacc [Joh75] and lex [LS75]. The

SimpleCalc implementation consists of 1826 lines of generated C code. The gram-

mar for SimpleCalc inputs is shown below.

Expressions e ::= (e) | e ∗ e | e/e | e % e | e + e | e − e

| e ∨ e | e ∧ e | −e | l | n

Letters l ::= [a − zA − Z]

Numbers n ::= [0 − 9]

20

The program takes an arithmetic expression with letters as variables, various

numerical operators, parentheses for precedence, and logical operators. The cal-

culator implementation replaces letters with numbers that have been recorded in

an array. Numerical and logical operators are directly applied, and precedence

is handled during parsing. This implementation contains bugs: the SimpleCalc

implementation forgets to check for division or modulus by zero.

We test SimpleCalc with a fixed input buffer of four bytes called input . We

compare and contrast random testing, test generation using concolic execution us-

ing the tool Cute , and concolic testing with selective enumeration using Cese .

We restrict the size of our buffer to four so we can exhaustively test all program

paths using both Cute and Cese . Although it is generally infeasible to run

either Cute or Cese to completeness for large inputs or large programs, this

small example clearly highlights the differences between naive concolic execution,

concolic execution with selective enumeration, random testing, and specification-

guided testing using concrete grammars. We compare the branch coverage ob-

tained for both Cute and Cese , where branch coverage is the percentage of

branches executed, and whether the bugs can be found. We also examine the

effect of increasing the input buffer size on these techniques.

3.1.1 Random Testing

With an input size of four bytes, there are (28)4 = 232 unique inputs. The input

space is too large for exhaustive testing all inputs. An automatic way of tackling

this problem is to randomly choose inputs. However, we claim that random

testing is not effective for this examples because the chances of hitting bugs are

very low.

Based on the SimpleCalc grammar, there are 80,910 valid strings of size four,

21

27,032 of size three, 62 of size two and 62 of size one. To calculate the number

of valid input buffers, we take account of the string terminator. With an input

of size one, the string terminator must be at input [1]. The contents at input [2]

and input [3] do not matter. Therefore, there is a total of 28 · 28 · 62 = 4,187,046

inputs representing valid strings of size one. Following the same calculation, we

have 15,872 inputs representing valid strings of size two, 27,032 of size three and

80,910 of size four, totaling close to 4.2 million valid inputs. Therefore, every

input has around a 0.1% chance of being a syntactically correct input and the

majority of these inputs will be only of size one, thus unlikely to exercise any

interesting paths.

Generating an input that will show buggy behavior in this calculator is

smaller. This implementation does not check for divide by zero errors, there-

fore operations dividing by zero or modulo by zero result in runtime exceptions.

Valid strings containing “/0” or “%0” result in this error. For valid inputs of size

four or less, there are only 372 inputs that demonstrate the error. Thus, random

testing has a 0.000009% chance of hitting bugs. In fact, even if SimpleCalc is

tested with 8 million random inputs, there is only a 50% chance that a bug caus-

ing string would have been generated. The problem, as is well-known, is that

random testing is neither selective nor directed.

3.1.2 Constrained Exhaustive Enumeration

Specification-based test generation improves the pitfalls of random testing by

generating inputs that are guaranteed to satisfy certain well-formedness specifi-

cations [CL05, GG75, BKM02, KM04]. In particular, there are test input genera-

tors that take as input a grammar (written, e.g., in yacc) describing valid inputs,

and generates test cases that satisfy the grammar [CL05, Mau90, LS06]. Usually,

22

these techniques exhaustively enumerate all inputs satisfying the specification,

and test the program on all such inputs. Unfortunately, even for simple input

specifications such as our grammar for SimpleCalc, the space of valid inputs is

very big. As Table 3.1 demonstrates, for the SimpleCalc example, the number

of valid strings for an input buffer of size six is already 187, 765, 078. Enumerat-

ing and testing this large space of inputs is expensive. Moreover, certain errors

may only be exhibited when the input buffer is much larger. Exhaustive enu-

meration can generate many equivalent test cases, i.e., tests that have the same

observable behavior on the program. In this example, the grammar-based input

generator Yagg [CL05] generates the tests 0 + 0, 0 + 1, 0 + 2, etc., all of which

exercise the identical program path. Thus, while the enumerative strategy for

specification-based testing is selective, it is not directed.

Number of Inputs by Technique Time Cov
Len Grammar Exh Cute SymStr Cese Cute Cese

1 62 28 21 1 21 0.5s 4s 36%
2 124 216 247 2 40 2s 3s 52%
3 27K 224 2.5K 11 1.7K 20s 24s 54%
4 108K 232 248K 35 6.6K 30m 3m 56%
5 47MM 240 n/a 201 261K n/a 1h 58%
6 187MM 248 n/a 652 1.5MM n/a 3h 58%

Table 3.1: Effect of input size. Length is the maximum size of the input
buffer. In the Number of Inputs by Technique column: Grammar denotes
the number of syntactically valid strings, Exh denotes the number of unique
buffers by exhaustive enumeration, Cute gives the number of inputs generated by
Cute , SymStr gives the number of strings in the symbolic grammar, Cese gives
the number of inputs generated by Cese . Time gives the execution time for
Cese denoted by Cese and the execution time for Cute denoted by Cute
in seconds (s), minutes (m) or hours (h). Cov shows the branch coverage for
both Cute and Cese in the first 4 rows, but just for Cese in the last two.
Cute did not terminate within 5 hours for those tests so such entries are marked
as n/a.

23

3.1.3 Concolic Execution

We know compare how concolic execution performs on this example. Symbolic

execution based test generation is directed: test inputs are generated by system-

atically exploring program paths at the symbolic level, and these inputs are then

guaranteed to execute along pre-determined paths. Thus, the set of test inputs

generated are not redundant: each leads to a different program path. Unfortu-

nately, current implementations of concolic execution based test generation are

not selective: test inputs are generated randomly, and iteratively refined using

symbolic constraints. While theoretically complete in the limit, in practice, the

lack of selectivity is a serious problem, and a very large number of inputs must

be generated to reach the part of the code not related to input error handling.

This leads to poor coverage for most realistic testing budgets.

We test the capability of symbolic execution based test generation on the cal-

culator example, using Cute , an implementation of concolic execution [SMA05].

To test SimpleCalc with Cute , we created a symbolic input buffer of size four.

Cute then exhaustively generates all paths in the program by iteratively finding

satisfying assignments to constraints that lead to paths that have not yet been

covered. Unfortunately, the code for parsing examines all possible values for its

input characters. For lex, this operation is represented by a table lookup. Figure

3.1 shows branches that are equivalent to this table lookup. From just these 10

branches, Cute can derive 104 unique paths for a size four buffer. Coupled

with the other branches in the code, Cute needed to explore a total of 248,523

inputs, taking 30 minutes. This worsens as the input size increases. As Table 3.1

shows, we could not finish exhaustive testing of program paths for buffers greater

than four characters even after 5 hours.

24

3.1.4 Cese

The main idea of Cese is to combine the selectiveness of specification-guided

test generation with the directedness of symbolic or concolic test generation. To

do this, we introduce symbolic grammars. It will be convenient for us to con-

sider context free grammars where the terminal symbols are regular expressions

rather than individual characters from an alphabet. A symbolic grammar for

a (concrete) grammar replaces some terminals of the grammar with a symbolic

constant. Each string in the symbolic grammar represents a set of strings, where

each symbolic constant is substituted with a string in the regular expression which

it represents.

For example, a symbolic grammar G′
calc for SimpleCalc replaces the concrete

productions for letters and numbers with symbolic placeholders:

Letters l ::= α

Numbers n ::= β

where α and β are symbolic constants. With this change, the number of strings of

a certain length that can be generated by the grammar reduces significantly. For

example, instead of the 100 different strings “0/0”, “0/1”, . . ., “9/9” representing

division, we now have just one symbolic string “β1/β2” representing all these

concrete strings. Note that we use subscripts for the different occurrences of

the symbolic variables, each occurrence of a symbolic constant is instantiated

separately.

The original program does not know about symbolic constants so our test

generation algorithm must instantiate symbolic constants with actual constants.

This instantiation can be performed in a directed way by treating symbolic con-

stants as unconstrained symbolic values to be filled in by concolic execution.

25

Think of a string generated by a symbolic grammar as a string with “holes” for

certain terminals. These holes are filled in by a concolic execution, depending

on branches executed within the code. Together, the reduction in the number

of possible strings in the language enables exhaustive enumeration to scale —

thus providing selectivity— and concolic execution with the symbolic constants

enables exploration of non-redundant strings — thus providing directedness.

This is the basic idea of Cese . We convert the concrete grammar to a

symbolic grammar by replacing certain lexical tokens with symbolic constants.

What tokens to replace is decided by a simple heuristic. If the token represents

one concrete string (e.g., lexical tokens corresponding to program keywords or op-

erators), it is not replaced. On the other hand, if the lexical token corresponds to

an unbounded set of concrete strings (e.g., variable names, numbers), we replace

it with a symbolic constant. Second, we exhaustively enumerate all symbolic

strings from the symbolic grammar (G′
calc in the example) up to a certain size.

Third, for each (symbolic) string, we use concolic execution to perform directed

testing, where each symbolic constant is considered to be an unconstrained input

to be solved for.

For example, “α1 + α2” is run by forcing only the second byte to be ’+’ and

allowing concolic execution to generate values for α1 and α2 that exercise different

paths. For this particular symbolic input, concolic execution exercised 188 unique

paths. By working on the symbolic grammar, Cese has replaced 3,844 possible

runs (corresponding to the valid grammar strings) with 188 concolic executions.

Compared to Cute , Cese gets the same coverage for substantially fewer inputs

(6,611 versus 248,532) and an order of magnitude less time (3 minutes, versus 30

minutes). Table 3.1 shows the number of symbolic strings generated and also the

number of concrete inputs generated from all those symbolic strings.

26

if (*yy_cp >= 0 && *yy_cp <= 0) yy_c = 0;

if (*yy_cp >= 1 && *yy_cp <= 7) yy_c = 1;

if (*yy_cp >= 8 && *yy_cp <= 8) yy_c = 2;

if (*yy_cp >= 9 && *yy_cp <= 31) yy_c = 1;

if (*yy_cp >= 32 && *yy_cp <= 32) yy_c = 3;

if (*yy_cp >= 33 && *yy_cp <= 47) yy_c = 1;

if (*yy_cp >= 48 && *yy_cp <= 57) yy_c = 4;

if (*yy_cp >= 58 && *yy_cp <= 96) yy_c = 1;

if (*yy_cp >= 97 && *yy_cp <= 122) yy_c = 5;

if (*yy_cp >= 123 && *yy_cp <= 255) yy_c = 1;

Figure 3.1: [Example] Calculator Lexer.

While the number of inputs still grows as the input buffer size increases,

the significant reduction in the input space by moving to a symbolic grammar

allows us to exhaustively search larger inputs. In further experiments detailed

in Section 3.3, we have found that this combination of selective symbolic test

input generation together with directed search is essential in scaling concolic test

generation to real examples.

3.2 The CESE Approach

3.2.1 Symbolic Grammars

Let Σ be a finite alphabet. A terminal is a regular expression over Σ. We define

a grammar G = (Vt, Vn, R, S) where Vt is a finite set of terminals, Vn is a finite

set of variables, R ⊆ Vn× (Vn ∪Vt)
∗ is a finite set of production rules, and S ∈ Vn

is a distinguished start variable. The language L(G) ⊆ Σ∗ of the grammar G

is defined in the usual way [Sip97]. The language Lh(G) ⊆ Σ∗ of the grammar

G = (Vt, Vn, R, S) is defined as all strings derived from h applications of any of

the productions rules R from the start variable S. A word w ∈ Lh(G) has a

height of h.

27

Let α1, . . . , αk be k symbolic names not in Σ. We assume each αi stands for the

regular language {αi}. A symbolic grammar G′ for a grammar G w.r.t. terminals

T = {t1, . . . , tk} ⊆ Vt is the grammar (Vt \T ∪{α1, . . . , αk}, Vn, R[αi/ti], S) where

R[αi/ti] substitutes αi for each occurrence of ti for i ∈ {1, . . . , k}. The language

of the symbolic grammar G′ is a subset of (Σ ∪ {α1, . . . , αk})
∗. Notice that a

string can now contain symbolic constants.

A symbolic grammar G′ abstracts a concrete grammar G in the following

sense. For any string w ∈ L(G), there exists w′(β1, . . . , βk) ∈ L(G′) with symbolic

constants β1, . . ., βk replacing terminals t1, . . ., tk such that there exist strings

a1 ∈ L(t1), . . ., ak ∈ L(tk) such that w = w′[β1/a1, . . . , βk/ak].

Given a (concrete or symbolic) grammar G and a height h, all possible strings

in Lh(G) can be enumerated by dynamic programming [CL05].

3.2.2 The Cese Algorithm

The Cese algorithm has four phases: symbolic grammar construction, ex-

haustive enumeration, program instrumentation, and concolic execution. Let

P = (X,X0,L, ℓ0, op, E) be a program where X0 = {xi} and 0 ≤ i < k define

some string s = x0, x1...xk−1 of length k such that all valid inputs must satisfy

some grammar G, s ⊆ G.

For the first phase, we construct a symbolic grammar G′
i for each concrete

grammar Gi. The symbolic grammar construction uses the following heuristic. If

a lexical token is a constant string (equivalently, if the regular expression defines

a singleton language), then no symbolic constants are generated. Otherwise, we

distinguish between finite regular languages and infinite regular languages. This

distinction can be checked by looking for cycles in the derived automaton. For

a finite regular language with bound k on the length of strings, we introduce

28

k symbolic variables α1, . . . , αk and replace the token with the k sequences α1,

α1α2, . . ., α1 . . . αk. For an infinite regular language, we replace the token with

the symbolic regular language α∗ denoting any number of symbolic constants.

In our experiments, the tokens either defined regular languages with one letter

strings (e.g., tokens for single-letter variable names in SimpleCalc), or infinite

regular languages (e.g., tokens for numbers).

However any subroutine that converts a concrete grammar to an abstracting

symbolic grammar can be used. There is a trade-off between the number of

symbolic strings with the number of symbolic variables in each string. As the

number of symbolic variables increases, the number of valid symbolic strings

decreases. For example, the coarsest abstraction is an unbounded number of

symbolic letters. This symbolic grammar only contains four strings for an input

of size four: α1, α1α2, α1α2α3 and α1α2α3α4. However using this abstraction is

equivalent to just using concolic execution.

Once a symbolic grammar is constructed, we use exhaustive enumeration

techniques [CL05, LS06, Mau90] to generate strings from the grammar G′
i up

to height hi. The generated strings have both constant symbols and symbolic

constants. For each choice w ∈ Lhi
(G′

i) and the length of w is less than ki, we

introduce a loop in the beginning of our program: 1

for j = 0 to ki − 1 do xj := γ[j]

where γ[j] = w[j] if w[j] is a constant symbol, and γ[j] = xj if w[j] is a symbolic

constant. The effect of the loop is to only retain the symbolic constants in the

string as inputs, while instantiating all constant symbols.

1Our basic imperative language does not have a for loop. However, we write this for loop
for readability. This can easily be converted to more basic control flow in our language.

29

Finally, we perform concolic execution on this instrumented program.

The correctness of the Cese algorithm is defined relative to the Cute al-

gorithm and the algorithm that enumerates all valid strings and executes the

program on each string. Specifically, for any program P (that generates exclu-

sively constraints within the capability of the underlying constraint solver), the

set of paths explored by Cute on valid inputs (an input is valid if the k char-

acters do form a string in L(G)) is exactly the same as the set of paths explored

by Cese . Further, this set is exactly the set of paths explored by exhaustive

enumeration of all strings from G and executing the program on each string.

3.3 Experiments

Cese was implemented for programs that use yacc and lex to describe their

inputs. Both symbolic grammar generation and symbolic string generation were

automatic. We used Yagg [CL05] to automatically generate symbolic strings

from our symbolic yacc and lex grammars and Cute [SMA05] as our concolic

testing engine. Cute was modified to handle reasoning about statically allo-

cated arrays by replacing those array accesses by branches, as seen in Figure 3.1.

We used lp solve [BDE07] as our underlying linear constraint solver. For real

applications, there are rarely resources to explore all symbolic strings, therefore,

we can choose which symbolic inputs to use. In the implementation, we sorted

the inputs by the number of symbolic constants in the input. This optimization

on the average increases coverage by 3% in our 30 minute experiments.

We ran two sets of experiments to test coverage and bug finding. Section

3.3.1 compares the effectiveness of Cese , naive concolic testing, random testing

and specification based testing in branch coverage. Section 3.3.2 describes how

30

concolic testing and Cese can find a deep buffer overflow bug. All experiments

were performed on a MacBook Pro 2.33 Ghz Intel Core 2 Duo with 2GB RAM

running Mac OS X 10.4.8.

3.3.1 Coverage

Our first set of experiments measured branch coverage. We can distinguish a

branch statically (i.e., location in the code) or dynamically (i.e., location on an

executed path). Branch coverage is statically unique branches executed over all

runs divide by the total number of branches in the program. For all experiments,

Cese distinguished each branch dynamically to explore program paths, but

then measured the number of statically unique branches covered. Cese can

also explore paths based on distinguishing static branches only but the measured

branch coverage is usually significantly reduced in that case[God07].

We tested five programs bc, lua, logictree, cuetools, and wuftpd. bc is the

popular UNIX calculator. lua is an interpreter. logictree is a logical formula

solver. cuetools is an API for playlists. wuftpd is a popular FTP server. These

programs were modified to take a buffer as an input and were linked with a

concolic execution aware string library.

Each program has several command line and configuration options. We re-

strict the programs to have their default configurations and do not explore the

alternate configurations. We ran Cese on each program for 30 minutes. For

each program, Cese generated words with up to h applications of the produc-

tion rules of the symbolic grammar, where the parameter h was chosen so that all

words that can be derived with h− 1 applications, would be explored within 30

minutes. Table 3.5 shows the values of h in the Height column. Also note that

the generated inputs can be used independently of Cese as part of a regression

31

suite. All inputs generated by Cese for all experiments can be rerun without

the symbolic execution and constraint solving in less than 5 minutes. We focus

on measuring test generation for the default configuration so we may compare

against other approaches.

Manual Testing. Each program has various command line or configuration

options, but for all experiments only the default configuration was used. Since

we do not exercise all configuration options, full branch coverage is not possible.

To estimate the maximum possible branch coverage based on the default config-

uration, we measure the branch coverage of test cases created by the program

developers. We found testcases for all programs except for wuftpd. All man-

ual testcases were relatively complex and required substantial knowledge of the

program to create. These testcases included mathematical algorithms, sorting

algorithms, and a large CD playlist.

Table 3.2 shows how Cese running for 30 minutes compares to manually

created test cases. Cese ’s automatically generated inputs have 10% less total

coverage than the manual tests. We found this quite remarkable considering

that two of these programs were language interpreters that included large sets

of library functions that were unspecified in the grammar. Also, to our surprise,

Cese performed slightly better in the cuetools testcase, because the developer

only considered certain types of music lists and did not utilize the complete

grammar. In the other programs, Cese was not as effective as manually created

tests because Cese did not use a large enough input buffer or did not have time

to enumeratively explore all symbolic constants.

Naive Concolic Testing. We used Cute [SMA05] for the comparison. For

all our Cute experiments, we chose the input size to provide the best coverage

for each 30 minute run. Input size was 10 for all Cute experiments. Table

32

3.3 shows the results. On average, Cese had a 10% improvement over Cute .

Usually, Cese generates fewer inputs in the allotted time, because Cese ex-

plores deeper paths resulting in longer execution times while runs generated by

Cute are short runs resulting from parse errors. However in wuftpd, Cute gen-

erated less inputs, because the number of symbolic constants and their constraints

overwhelmed the constraint solver, causing it to timeout. As seen in Table 3.5,

Cese could generate longer input strings with significantly less symbolic vari-

ables. Cute required all of the input to be symbolic therefore creating a burden

in the constraint solving and limiting the input size.

We also investigated how long it would take naive concolic test generation to

achieve the same amount of coverage as running Cese for 30 minutes. Cute can-

not get close to the same coverage as Cese even when given ten times as much

time. We ran Cute for five hours on each program. There was only a slight

increase (1%) in average coverage – still 9% less coverage than running Cese for

30 minutes. Note that for programs requiring larger valid strings such as cuetools,

there was no improvement. Cute is stuck in the parsing code – doing a search

that is exponential in size of the input. Cese on the other hand, essentially

skips a large part of the parsing code and its performance instead depends on the

number of production rules and the number of symbolic variables in the symbolic

grammar.

Specification-Based Testing. We used the concrete grammar to exhaustively

generate inputs with up to h applications of the production rules where h was

chosen such that we could explore all inputs with h − 1 applications. Table 3.5

shows h per program in the Height column. Table 3.4 shows the coverage for

30 minute runs of grammar based testing. Grammar based testing generates

more inputs than Cese in the same amount of time, but Cese explores inputs

33

with more height, therefore, more complex and longer paths. The introduction

of symbolic letters in Cese reduces the input space without sacrificing coverage.

Normally, this reduction is so significant that the cost of symbolic execution is

worth it (i.e., for bc, there were 790 Cese inputs of height 3 but 257074 concrete

words of height 3). However, grammar based testing was slightly better than

Cese for logictree. logictree’s grammar allowed grammar based testing to

explore words of higher height than Cese in 30 minutes. However, as we explore

words with increasing height, there is a combinatorial blowup in the number of

concrete words. If testing increased to one hour, Cese will explore words of

greater height than traditional grammar testing.

Overall, Cese only performed 6% better than enumeration-based testing

in the same budget. However, the number of inputs generated by Cese is

usually an order of magnitude fewer than the number of inputs generated by

exhaustive enumeration. Moreover, without test generation, the total run time of

Cese inputs was 5 minutes, in contrast to 2.5 hours for exhaustive enumeration.

Given that generated inputs are often added to the regression suite, this clearly

indicates the superiority of Cese with respect to test suite quality.

Random Testing. We also applied random testing for 30 minutes. We fixed the

input length to be 10 for each program because that value gave the best coverage

results. As seen in Table 3.4, random testing explored the most inputs but was

the least effective, because most random inputs were invalid and only exercised

the syntax error handling code of the test programs. These results reaffirm that

random testing is ineffective for programs requiring structured inputs.

Discussion and Limitations. As described in Section 3.1, both concolic exe-

cution and specification based testing have limitations. The combination of the

two, as shown in our experiments, lessen these limitations, allowing Cese to

34

have better performance and scale to larger programs.

Concolic testing is limited to the number and types of constraints generated

by the program. If the constraints are beyond the theory of the constraint solver,

concolic testing resorts to random testing. If the number of constraint becomes

large, the constraint solver will become very slow. Although in our experiments

all constraints were within the theory of lp solve, both lua and wuftpd gen-

erated constraints that caused lp solve to timeout when using naive concolic

testing. Specifically, uses of switch statements and the strlen function intro-

duces many inequalities in our constraints resulting in an exponential increase

in the number of constraints to be solved. Cese greatly reduces the number

of symbolic constants per input. Instead of testing the program with one large

symbolic input, Cese divides the search space using knowledge of the gram-

mar, thus allowing Cese to run all experiments without causing the underlying

constraint solver to timeout. However, these limitations still affect performance

when Cese is used to generate large inputs.

With larger inputs, lex and yacc style symbolic grammars do not give us

enough constraints. Consider the following program that calculates the 10th

factorial in the bc language:

define f (x) {

if (x<=1) return(1)

return (f(x-1)*x)

}

f (10)

This 60 character input contains 30 tokens and 9 symbolic constants in our sym-

bolic grammar for bc. Generating interesting inputs of this size is still infeasible.

35

Enumerating all possible symbolic strings and executing them with a large num-

ber of symbolic constants would take far too many resources.

Also, the grammar does not capture semantic properties of the input. For

example in bc and lua, we must rely solely on concolic execution to ensure only

defined functions are being used, assigned variables are being read, input is type

correct, etc. Other properties are not captured by either the grammar nor can

be found by concolic execution. For example in lua, there is a large set of library

functions such as “print” that can be called. These functions do not appear in the

grammar, and calls to these functions are sufficiently deep making it hard if not

impossible for concolic execution to realize them. To remedy this, one can either

use a more descriptive grammar such as one that captures semantic properties

i.e., f (10) is a valid expression only if f has been defined, or to focus on specific

classes of bugs.

In summary, our preliminary data suggests that Cese is highly effective in

quickly generating a small test suite that can match or outperform many other

test generation algorithms, and can get close to coverage obtained by manual test-

ing while investing in a relatively short testing budget. However, more expressive

specifications are required in order to explore deeper parts of the program state

space.

3.3.2 Bug Finding

Next we investigate the effectiveness of using Cese to find a specific class of

memory access bugs. We use Cese to find a known buffer overflow in wuftpd

that is difficult to find with Cute . We show that Cese allows concolic testing

to scale so it can find interesting bugs that are beyond conventional techniques.

In the path lookup code in wuftpd, the fb realpath() function has an off-by-

36

Cese (30 min) Manual Testing
Program LOC Coverage Inputs Coverage

bc 12K 1010/2500 = 40% 133996 1235/2500 = 49%
logictree 8K 599/1376 = 43% 16827 740/1376 = 53%
cuetools 10K 572/1876 = 31% 99367 514/1876 = 27%
lua 32K 704/2422 = 29% 1061 1300/2422 = 54%
wuftpd 36K 552/1285 = 43% 10168 n/a

Total 3437/9459 = 36% 3789/8174 = 46%

Table 3.2: Coverage: Cese and Manual Testing. LOC is lines of code. Cov-
erage is the branch coverage – executed branches divided by total branches.
Inputs is the number of inputs generated. Manual Testing Coverage denotes
the branch coverage for the developers’ testcases. n/a denotes we could not find
the developers’ testcases.

one error that can be used as a buffer overflow with specifically crafted instruc-

tions. Figure 3.2 shows the bug. If resolved is equal to a non-root directory,

then an extra “/” is added. Therefore, the MAXPATHLEN check is incorrect be-

cause rootd should be !rootd in line 07. Although this function is called by any

command that uses pathnames, finding this bug is difficult because one needs to

call this function with a pathname containing directory symlinks that results in

a resolved pathname of exactly MAXPATHLEN size.

However even if we avoid this difficulty by restricting pathnames to contain a

specific directory symlink that can exercise this error, finding the other pieces is

still difficult. Suppose MAXPATHLEN is 1024 bytes and the directory link expands

from a single letter directory link to a 23 letter directory name. Then the size

of the string acting as the buffer must be exactly 1000 characters long. Also,

there is the requirement of generating the right command. Random testing fails

because the chance of both the directory and command string being generated is

infinitesimally small. Although grammar-based testing will find the right com-

mands to execute, grammar-based testing also fails because the number of valid

37

Cute (30 min) Cute (5 hour)
Program LOC Coverage Inputs Coverage Inputs

bc 12K 865/2500 = 35% 148868 883/2500 = 35% 949948
logictree 8K 298/1376 = 22% 225103 341/1376 = 25% 2133323
cuetools 10K 456/1876 = 24% 147915 456/1876 = 24% 720384
lua 32K 584/2422 = 24% 2734 668/2422 = 28% 22939
wuftpd 36K 238/1285 = 19% 1139 238/1285 = 19% 11195

Total 2441/9459 = 26% 2586/9459 = 27%

Table 3.3: Coverage: Cute . LOC is lines of code. Coverage is the branch
coverage – executed branches divided by total branches, and Inputs is the num-
ber of inputs generated, for 30 minute Cute runs and 5 hour Cute runs.

Grammar (30 min) Random (30 min)
Program LOC Coverage Inputs Coverage Inputs

bc 12K 779/2500 = 31% 262773 626/2500 = 25% 401673
logictree 8K 620/1376 = 45% 272851 526/1376 = 38% 461524
cuetools 10K 425/1876 = 23% 256748 452/1876 = 25% 428672
lua 32K 650/2422 = 26% 245130 541/2422 = 22% 390404
wuftpd 36K 377/1285 = 29% 290356 68/1285 = 5% 489904

Total 2851/9459 = 30% 2213/9459 = 23%

Table 3.4: Coverage: Grammar Based Testing and Random Testing. LOC is
lines of code. Coverage is the branch coverage – executed branches divided by
total branches, and Inputs is the number of inputs generated.

strings smaller than the bug causing input is huge. For example, there are 271000

strings of lower case letters and the character ’/’ with length 1000. If we use a

combination of random and grammar-based testing, we still are likely to fail to

generate such a large string of that specific size.

Concolic testing can theoretically find this bug by using symbolic execution on

string lengths. We experimentally compare pure concolic testing against Cese by

using both techniques on wuftpd. The directory symlink is incorporated into both

techniques as extra constraints on the input. The goal of the test is to generate

38

Cese Grammar
Program Height Len Sym Height Len

bc 3 10 2 3 10
logictree 6 5 3 7 6
cuetools 11 40 3 11 40
lua 11 20 5 7 10
wuftpd 15 21 4 13 16

Table 3.5: Inputs: Cese and Grammar Based Testing. Height is the maximum
applications of production rules and Len is the maximum generated input length
for grammar based testing and Cese . Sym is the maximum number of symbolic
constants in Cese inputs.

any of the eight commands that can hit the bug and a string which, combined with

the resolution of a known directory symlink, has a length of exactly MAXPATHLEN.

Length Abstraction. Although generating an input that exercises this buffer

overflow requires a large pathname and therefore a large input buffer, both

Cese and Cute can use a length abstraction for the strings while generat-

ing inputs [DRS03]. The concolic execution input is changed to include both

the original input buffer and a symbolic length. Concolic execution can track

the length constraints on the inputs by by instrumenting the various string and

memory manipulation library functions with the appropriate symbolic operations.

Using this length abstraction, Cese finds the overflow within four minutes

while Cute does not find it within thirteen hours. Symbolic grammars al-

lowed concolic execution to scale by reducing the number of constraints needed

to be solved and the total number of inputs needed to be explored. Specifically,

Cute is stuck tracking constraints in the parsing of commands. Even after 13

hours of execution and over 29,116 generated inputs, Cute still does not increase

its coverage of wuftpd and does not find the bug. On the other hand, Cese gets

the command from the grammar and thus has fewer symbolic values to solve and

39

/*

* Join the two strings together, ensuring that the

* right thing happens if the last component is

* empty, or the dirname is root.

*/

00 if (resolved[0] == ’/’ && resolved[1] == ’\0’)

01 rootd = 1;

02 else

03 rootd = 0;

04

05 if (*wbuf) {

06 if (strlen(resolved) + strlen(wbuf) +

07 rootd + 1 > MAXPATHLEN) {

08 errno = ENAMETOOLONG;

09 goto err1;

10 }

11 if (rootd == 0)

12 (void) strcat(resolved, "/");

13 (void) strcat(resolved, wbuf);

14 }

Figure 3.2: [Example] wuftpd buffer overflow bug. In line 07, rootd in the
comparison with MAXPATHLEN should be !rootd

less inputs to generate. Therefore, Cese finds the bug in 4 minutes and achieves

43% branch coverage in 30 minutes while Cute gets only 19% coverage and does

not find the bug within 13 hours.

40

CHAPTER 4

Length Abstractions

Memory safety violations can lead to severe security vulnerabilities. Software

containing these errors can lead to denial of service or loss of control to an at-

tacker, costing billions of dollars in damage [FOB05]. Although many techniques

and tools have been developed for finding such errors, none have been shown to

be 100% effective on realistic code [ZLL04]. Proving the absence of these errors

using static analyzes usually lead to many false warnings due to the lack of pre-

cise reasoning about bit operations, pointer arithmetic and arithmetic overflow.

Finding inputs leading to such errors using random or systematic testing is also

difficult due to the typically large input space.

Although concolic execution can be applied, the large input size and the large

number of paths make full path coverage problematic for very large applications

within a limited search period, say, one night. A lighter-weight approach to buffer

overflow detection using concolic execution is needed. The insight is that tracking

all symbolic values contained in input buffers is too precise and often unnecessary

for detecting these types of errors, thus resulting in a large input space that cannot

be searched completely in a reasonable amount of time. The idea is to track and

symbolically reason about lengths of input buffers and strings. This is done by

extending symbolic execution with respect to buffer contents to also include buffer

lengths. On the other hand, in order to speed up the search and make it more

tractable, symbolic execution only tracks the influence of data values stored in

41

prefixes of input buffers, instead of full buffers. This underapproximation has

the effect of pruning the search space in a rather uniform manner. Preliminary

experimental evidence of this is shown by code coverage data.

Because this technique explores an underapproximation of the input space,

some errors may be missed. However, this underapproximation finds a wide class

of common memory safety violations, because in many errors of this type, the

length of the input is important while the contents are not. Furthermore, the

underapproximation may be tuned to be more precise by making the symbolic

input prefix longer. The user can initially use a short prefix and gradually increase

the prefix as their testing budget allows. In the limit, all input could be made

symbolic, allowing for completeness, but at a higher test generation cost.

Figure 4.1 shows a possible buffer overflow in procedure t1 resulting from an

off-by-one error when accessing array A. The input is a string s where the string

length i is an index to an array of size 5. There is a check to see if the input

i is within the bounds of the array but the check does not consider that i is

incremented before the array access. If the input is 4, the bounds check passes,

but A[4 + 1] is set to 0 resulting in a memory safety violation.

Assuming code for the function strlen is available, a concolic execution test-

ing tool such as DART [GKS05] will attempt to exercise all feasible program

paths and find n+1 unique explicit paths for inputs s of up to length n. Indeed,

covering all possible execution paths of the strlen function for an input size

bounded by n requires n + 1 input tests of different length. In this case, if n is

greater than 4, the off-by-one error in accessing the array is found simply because

all string lengths are enumerated up to n.

Note that this off-by-one error only depends on the size of the input string s,

not on its content. To eliminate the redundant inputs due to the unfoldings of the

42

loop in strlen, we can track only the abstract length of the input string s and

instrument the string library, including functions like strlen, with additional

code that updates abstract lengths. strlen would thus be replaced by a function

that returns a symbolic length. Then, program variable i would be assigned to

this symbolic length. Using directed testing, this would result in two paths to be

covered, each satisfying (i > 4) or (i ≤ 4) respectively.

However, either path does not lead to a bug. To remedy this, we can include

implicit paths by providing instrumentation that tracks allocated memory and

adds the appropriate checks before each memory dereference [GLM07]. Function

t2 in Figure 4.1 shows these checks in the form of assertions. At each such

assertion, we then try to solve for an input that violates the assertion. In this

case, the path constraint for the assertion is (i ≤ 4) ∧ (i + 1 ≥ 5) resulting in a

symbolic input length (i = 4).

This combination of techniques have been implemented in Splat , a tool for

finding memory safety violations in C programs. In the next section, we illustrate

further the key features of Splat with a more realistic example. In Section 4.2,

we recall basic notions of directed test generation. In Section 4.3, I describe the

implementation of Splat , and specify how to carry out symbolic execution with

symbolic lengths. Section 4.4 discusses results of experiments with a large set

of benchmarks. Experiments validate the choice of length abstractions, showing

that Splat can efficiently find buffer overflows in many programs for which

complete symbolic searches do not.

43

unsigned int strlen

(char *s) {

char *ptr = s;

unsigned int cnt = 0;

while (*ptr != ’\0’) {

++ptr;

++cnt;

}

return cnt;

}

void t1(char *s) {

unsigned int i;

int A[5];

i = strlen(s);

if(i > 4)

return;

A[i+1] = 0;

}

void t2(char *s) {

unsigned int i, tmp;

int A[5];

i = strlen(s);

if(i > 4)

return;

tmp = i+1;

assert(tmp>=0 && tmp<5);

A[tmp] = 0;

}

Figure 4.1: [Example] Buffer overflow due to off-by-one error in t1; additional
instrumentation in t2 with an assert

4.1 Example

Although Splat can find general memory safety violations, we introduce and

motivate our technique by examining how we can find buffer overflows in C pro-

grams. Figure 4.2 illustrates a buffer overflow that was present in WuFTP, an

ftp server. In this example, the string functions are the standard string.h func-

tions. A string is stored in some fixed sized buffer as an array of non-zero 8-bit

characters followed by a string terminator represented by a 0 byte. A buffer

overflow occurs when a string is copied into some buffer that is too small. This

is detected by Splat because copying a character beyond the end of the buffer

results in an illegal write. Even though this example is small, it challenges most

static analysis and automated test generation tools. Specifically, the path sen-

44

sitivity and pointer arithmetic causes static tools to report many false alarms,

while the large buffers create scalability problems for test generation tools. We

demonstrate how Splat overcomes these problems.

Testing Algorithm. Our algorithm for detecting buffer overflows implemented

in Splat combines two ideas: first, systematically searching for test inputs using

concolic execution [GKS05, SMA05], and second, tracking buffers and strings

partially symbolically.

The systematic search for test inputs runs the program on symbolic values

representing the input in addition to concrete inputs. The program is instru-

mented to additionally maintain a valid range for each pointer. The valid range

denotes the set of addresses that can be safely accessed by the pointer. For ex-

ample, for a pointer into a buffer, the valid range is between the start and end of

the buffer.

Like the concolic execution algorithm discussed previously, Splat maintains

a symbolic state that maps concrete addresses to symbolic expressions, and a path

constraint that stores the sequence of conditionals executed, as well as a sequence

of symbolic constraints representing the predicates in the conditionals. However,

in addition to the standard concolic execution algorithm, at each memory deref-

erence, if the dereferenced address is a symbolic expression, Splat constructs

a symbolic constraint such that any satisfying assignment to this constraint will

ensure that after executing the current path, the address being dereferenced will

point outside the valid range. Thus, finding a satisfying assignment indicates

a memory safety violation, and this satisfying assignment provides an input to

the program that demonstrates the bug. This test is then generated and run to

confirm the bug. If there is no satisfying assignment, the systematic search con-

tinues by generating a new input by modifying the path constraint and finding a

45

01: void lookup(char *resolved) {

02: char *wbuf = "blah";

03: if (resolved[0] == ’/’ &&

04: resolved[1] == ’\0’)

05: rootd = 1;

06: else rootd = 0;

07:

08: if (strlen(resolved) + strlen(wbuf) +

09: rootd + 1 > 1024) return;

10: if (rootd == 0)

11: strcat(resolved, "/");

12: strcat(resolved, wbuf);

13:

14: }

15:

16: void test() {

17: char resolved[1024];

18: input(resolved,5);

19: lookup(resolved);

20: exit(0);

21: }

Figure 4.2: [Example] Buffer overflow due to off-by-one error

satisfying assignment for this modified constraint. The new input is guaranteed

to have a different execution path from all previous runs. Splat terminates

when no new execution path can be found or when a bug is found.

Fully and Partially Symbolic Representations. In Figure 4.2, there is an

off-by-one error that causes a buffer overflow in the strcat function on line 12. If

resolved is equal to a non-root directory, then an extra “/” is added (lines 10–

11). The length check on line 8–9 is incorrect, and rootd should be !rootd. The

bug is exposed when lookup is called with a pathname that results in a resolved

pathname length of exactly 1024. Since most static analyzers treat buffers and

pointer arithmetic conservatively, they are likely to generate many false positives

for any code of this form, and identifying this particular bug within this large set

of false positives may be difficult.

Normally, concolic execution tools would track 1024 symbolic variables: one

46

for each character in the input (call this the fully symbolic representation). Un-

fortunately, introducing such a large number of symbolic values results in a large

number of paths and a large set of symbolic constraints that stresses the capacity

of the underlying constraint solver. Thus, this bug is difficult to find for di-

rected testing tools using a fully symbolic representation. For example, running

Cute [SMA05] on the program of Figure 4.2 took 2 hours and generated 1019

paths before finding the error. Excess paths are created when running through

the various string manipulation functions (such as strlen) because those func-

tions are not summarized.

Our algorithm for buffer overflows is based on the following observations.

First, for many buffer overflows (including this one), most of the actual content

of the buffer is not relevant, what is relevant is the length of the string stored

in the buffer, and some small prefix of that string. Therefore, instead of the

exact fully symbolic representation, we use a partially symbolic representation

that tracks a few characters of the stored string and its length symbolically while

filling the rest of the buffer randomly.

Second, many strings are manipulated as an abstract datatype using the stan-

dard string.h header functions. Once we introduce this partially symbolic rep-

resentation, we can precisely abstract the behavior of many header functions

instead of stepping through them. For example, the strlen function can be ab-

stracted to simply return the symbolic length of the string. This can drastically

reduce the number of paths to be explored in the directed search.

With these two optimizations, our algorithm can reach all branches and detect

all memory safety violations in lookup while exploring only a few paths.

In general, of course, partial symbolic representations can miss paths, but our

approach allows the tester to iteratively increment the size of the symbolic prefix.

47

Running Splat . We demonstrate our technique step by step. The test function

is the test harness and the starting point for Splat . For C programs, we

introduce a function input(p,k) which specifies the input, where p is the address

of the buffer storing the input and k is the number of symbolic entries in the input

(i.e., the symbolic prefix). In this example, we chose the symbolic prefix to be

5 characters. In general, the user can set a short prefix length and gradually

increase the length as their test budget allows. To allow large input strings to be

generated, a symbolic string length is associated with the input. If the symbolic

length exceeds the symbolic prefix, characters beyond the prefix are randomly

generated.

Thus, the test harness constructs the following inputs for Figure 4.2. First, it

fills the character buffer resolved with random characters (each of size 8 bits)

followed by the string terminator character. Of these random characters, the first

5 are tracked. At the same time, it constructs an integer representing the length

of the string that is also tracked symbolically. Finally, it calls the lookup function

with the buffer resolved (line 19). Such a test harness could be automatically

constructed by static analysis of the C code [GKS05] with some default symbolic

prefix length parameter.

During the first run, the input string will be of length 5 with randomly cho-

sen non-zero characters in the first five entries and a string terminator in the

last entry. Let’s say for this run, we randomly generate resolved = “a1weq”.

We introduce 5 symbolic values representing the first 5 elements of resolved:

α0, α1, α2, α3, α4 and a symbolic value β representing the string length. We in-

strument the strlen function to return the symbolic length of a string. Thus,

when called with resolved, strlen returns the symbolic value β as the length.

When the program is executed with this input, it does not take the then

48

branch at line 3 nor the then branch at line 8. Executing to line 9, we have

¬(α0 = ′/′ ∧ α1 = 0) ∧ ¬(β + 5 > 1024) as the path constraint.

Notice that there is no predicate representing the branch at line 10. This

is because the variable rootd is not symbolic, hence the conditional rootd

== 0 evaluates directly to true and so is not included in the path constraint

(see [GKS05]). At line 11, we update the symbolic state of resolved by up-

dating the string length to β + 1. At this point, we have to check whether

the call to strcat at line 11 can cause a buffer overflow. To check this, we

ask whether there is a satisfying assignment for the extended path constraint

¬(α0 = ′/′ ∧ α1 = 0) ∧ ¬(β + 5 > 1024) ∧ (β + 1 ≥ 1024). Since the above

constraint is unsatisfiable, there is no buffer overflow (yet).

At line 12, we update the string length of resolved to be β+5 and again check

for a possible overflow. This time, we check if there is a satisfying assignment for

the extended path constraint ¬(α0 = ′/′ ∧ α1 = 0) ∧ ¬(β + 5 > 1024) ∧ (β + 5 ≥

1024). This constraint is satisfiable and a solution is β = 1019 and α0α1α2α3α4 =

“a1weq”. This indicates a potential buffer overflow. Next we generate an input

string with a prefix of “a1weq” but of length 1019 by filling the non-symbolic

suffix with random non-zero characters. This new test case causes the resolved

array to overflow.

Suppose now we fix the bug by replacing rootd in line 9 with !rootd and

rerun Splat . The first run with “a1weq” passes all memory violation checks.

We create a new test case by negating the last branch predicate, proceeding in a

depth-first order. Our path constraint currently is ¬(α0 = ′/′∧α1 = 0)∧(β+6 ≤

1024). We solve for a new test case satisfying ¬(α0 = ′/′∧α1 = 0)∧(β+6 > 1024),

getting a 1019 length string with “a1weq” prefix. After the next run, we get the

path constraint ¬(α0 = ′/′ ∧ α1 = 0) ∧ (β + 6 > 1024). We recognize that

49

both branches of the last conditional statement have already been explored so we

negate the first condition and solve for the path constraint (α0 = ′/′ ∧ α1 = 0),

getting the string “/” as the next input. We dropped the (β+6 > 1024) constraint

because by negating an early branch predicate we can no longer guarantee that

we will hit the later branch. The third run with “/” as input has (α0 = ′/′∧α1 =

0) ∧ (β + 6 ≤ 1024) as its path constraint. Again we search alternative path

constraints depth first and negate the last branch, getting the new path constraint

(α0 = ′/′ ∧ α1 = 0) ∧ (β + 6 > 1024). However, β represents the symbolic length

of the input and the second character α1 is the string terminator so there is no

satisfying assignment for this constraint. Then, Splat terminates after exploring

all three paths in lookup.

Summary. Splat is composed of three main ingredients: (1) instrumentation

at every memory access to detect memory safety violations (buffer overflows),

(2) concolic execution, and (3) partially symbolic representations with symbolic

tracking of string length and symbolic summaries of string library functions.

Memory safety violations are found by tracking (de)allocations of memory and

insuring all dereferences stay within their respected bounds. The systematic

search of directed testing insures all explicit paths will be explored. Combining

(1) and (2) checks each memory dereference along all explicit paths, that is all

implicit paths leading to possible memory safety violations are explored. In

addition, (3) scales Splat to realistic programs that rely on the C string library

by reducing the burden on the symbolic path exploration. In the experimental

section, we validate our choice of partially symbolic representations by showing

that, despite the lightweight nature of the abstraction, it is sufficient to find many

buffer overflows in real benchmarks.

50

4.2 Memory Violation Checking

We shall extend our previous language that we used to present concolic ex-

ecution with memory allocation of arrays. That is, for some program P =

(X,X0,L, ℓ0, op, E), x ∈ X can be either an integer or an array of integers.

We define an array A of size k as a mapping from 0 ≤ i < k − 1 to integers. We

introduce array indexing and the sizeof function as new subexpressions. The i-th

entry of the some array stored in x is accessed by x[i], this access does not result

in an error if x is an array of length k and 0 ≤ i < k. For some array x, sizeof(x)

returns the length of x. Arrays are allocated using x := malloc(k) where after the

statement x points to an array of size k and array deletion free(x) where after the

statement, array pointed by x is removed. These operations allow us to model

dynamic memory allocation on the heap and limited pointer arithmetic.

Semantics. Semantics remain the same for other operations except M is now

a mapping from variables to arrays or integers. For a memory M , we write

M [x 7→ A] for the memory mapping x to some array A and every other variable

y ∈ X \ {x} to M(y). If x maps to some array A of length more than k, the

operation x[k] = e updates A[k] to be M(e), error other wise. After an allocation

operation x := malloc(k), a new array of size k is created with default values of

zero, that is A[i] = 0 for all 0 ≤ i < k and M [x 7→ A]. After a deletion operation

free(x), we return an error if x does not map to an array, otherwise, M [x 7→ 0].

Symbolic Execution. Splat performs symbolic execution of the program

together with concrete execution, similar to previous discussions. However there

are additional changes and checks to handle arrays. The symbolic memory map

µ may map variables to symbolic arrays. A symbolic array A′ = 〈ϕ, ϕl〉. ϕi

represents the symbolic length of the array. ϕ = 〈ϕ0, . . . , ϕk−1〉 represent the

51

first k symbolic values of the array which we call the symbolic prefix. For input

arrays, i.e., x ∈ X0 and M0(x) = A, we have µ(x) = A′ where A′ = 〈ϕ, ϕl〉 and

ϕ = 〈α0, . . . , αk−1〉 where alphai is a fresh symbolic constant that represents the

first k symbolic values of the array.

After an allocation operation x := malloc(e), we have µ[x 7→ A′] where A′ =

〈ϕ, µ(e)〉 and ϕ = 〈0, ..., 0〉. After an free operation free(x), we return an error

if x does not map to an array in M , otherwise, µ[x 7→ 0]. If the sizeof(x) is in

an symbolic expression, we check if µ(x) maps to some array A′ = 〈ϕ, ϕl〉 and

replace sizeof(x) with ϕl, otherwise we throw an error.

Constraint Solving. Like the standard concolic execution algorithm, the path

constraint ξ is initially true. At every conditional statement ℓ : if(x)goto ℓ′,

if the execution takes the then branch, the symbolic constraint ξ is updated to

ξ∧¬(µ(x) = 0) and if the execution takes the else branch, the symbolic constraint

ξ is updated to ξ∧(µ(e) = 0). For each array access x[e], we check if x is an array,

that is if µ(x) maps to some A′ = 〈ϕ, ϕl〉, otherwise we report an error. If µ(x)

does map to some A′. We check if ξ ∧ µ(e < 0) is satisfiable and if ξ ∧ µ(e > ϕl).

If we find solutions to those contraints, we have found a negative index or an

array out-of-bound access and thus we terminate and report an error.

Solving constraints lead to new paths, as discussed in the standard concolic

execution algorithm, or lead to previously explored paths that result in a memory

safety violation. Solving occurs as before except the length solved for an input

can exceed the symbolic prefix. In that case, random values are placed in array

slots that exceed the prefix.

52

Figure 4.3: Memory nodes contain possibly symbolic representations of string
length and size of allocated memory.

p = malloc(s) → create(p, p + s, µ(s))
int i → create(&i,&i+ sz(i), null)
*p → mn = find(p)

assert(p ≤ mn.δ +mn.a)
assert(p ≥ mn.a)

free(p) → mn = find(p)
assert(p ≤ mn.δ +mn.a)
assert(p ≥ mn.a)
delete(mn)

Figure 4.4: Tracking memory for heap and stack allocations, and checking pointer
dereferences.

4.3 Implementation

We implemented Splat for testing C programs. Splat consists of three parts:

a source-to-source instrumenter, a library for tracking memory allocations, deal-

locations, and accesses, and a library for symbolic execution, constraint solving,

and coverage tracking.

The instrumenter takes the source code of the program and adds calls to

the runtime library that tracks memory allocation and memory dereferences. It

also adds the calls that run the symbolic execution in parallel with the concrete

execution.

53

4.3.1 Symbolic State

Aside from the concrete state (i.e., the heap and stack), Splat tracks symbolic

values, allocated memory sizes, and string lengths. Tracking concrete allocated

memory sizes allows the detection of memory safety violations, while tracking

symbolic values and string lengths allow the generation of new inputs that result

in memory safety violations.

For each allocated buffer, Splat internally maintains a memory node that

represents the state of the buffer. The structure of a memory node is shown in Fig-

ure 4.3. A memory node tracks the starting address a and ending address b of the

buffer, the symbolic size δ of the buffer, the symbolic contents α0, α1, α2, . . . , αk−1

(with k being the preset constant for the length of the symbolic prefix), and (in

case the node refers to a string) the symbolic string length ω. Because there

exists only one symbolic length ω per memory node, we can only track one string

that starts at the beginning of the buffer. In our experiments, we have found

no need to track multiple strings per buffer. Memory nodes are kept sorted by

address ranges using a splay tree data structure [ST85]. As an optimization, if

the symbolic content stored in a buffer is a constant, it is not stored and we rely

on the concrete value.

Memory nodes are created whenever a local variable is allocated on the stack

(e.g., when a function is called) or when memory is allocated in the heap. Figure

4.4 shows the instrumentation that is added to the program to create mem-

ory nodes and to check memory dereferences for possible errors. The function

create(a, b, sz) creates a new memory node that starts at the concrete address a

and ends at the concrete address b with a (possibly symbolic) size sz. Notice that

for allocations, the compiler may choose to allocate more memory for alignment

but we track the most conservative allocation. In case the allocated memory

54

is a string, the field ω of the memory node is set to a fresh symbolic constant.

Recall that µ is the symbolic memory map, and µ(s) returns a possibly symbolic

expression by evaluating s in the symbolic state. The function find(p) finds the

memory node associated with an address p in the splay tree, if one exists. The

function delete(mn) deletes the memory node mn from the splay tree. Memory

nodes are removed from the splay tree when memory is freed on the heap or when

stack variables go out of scope on a function return.

Symbolic Execution. Symbolic expressions arise from inputs. Following our

description of test generation in section 4.2, we define an input through the

input(ptr, k) function where ptr points to the beginning of an input buffer

and k is the number of elements in the input. This adds mappings to fresh

symbolic values in the contents of the memory node that ptr points to. As

these elements are accessed and modified, other memory nodes are updated with

symbolic expressions.

The symbolic updates occur as described in Section 4.2. However we need

to take into account some specific features of C: memory allocation and string

manipulations. We replace the functions in string.h with our string library

that is aware of symbolic lengths and memory nodes. The string.h functions

are modified to update the symbolic length of strings. This is similar to how

CSSV [DRS03] symbolically executes string manipulation functions. Figure 4.5

show the updates for some widely used string manipulation functions.

The strlen(s) function makes the contents of the return value to be the

symbolic string length. The symbolic length is not simply the field ω of the

memory node that holds the string, because s may not point to the beginning

of the memory node a. The function strcpy(d,s) copies a string s to d, so the

symbolic length of string d is updated with the length of string s. Again, offsets

55

l = strlen(s) → mn = find(s)
µ[&l 7→ mn.ω −mn.a + s]

strcpy(d,s) → mnd = find(d);mns = find(s)
mnd.ω = d−mnd.a +mns.ω

−s +mns.a
assert(mnd.ω < mnd.δ)

strcat(d,s) → mnd = find(d);mns = find(s)
mnd.ω = mnd.ω +mns.ω

−s +mns.a
assert(mnd.ω < mnd.δ)

sprintf(d, c, s1...sn) → ∀1 ≤ i ≤ n. mni = find(si)
mnd = find(d)
mnd.ω = d−mnd.a + strlen(c)

+
∑n

i=1mni.δ − i+mni.a
assert(mnd.ω < mnd.δ)

Figure 4.5: Tracking memory for string operations.

with relation to the starting address of the memory nodes are added to take

account of d or s not being at the starting addresses of their respective memory

nodes. The function strcat(d,s) appends the string s to the end of the string

d so after the operation the symbolic length of string d is the sum of the length

of d and the length of s.

The function sprintf(d,c,s1...sn) creates a string at d from a format string

c and some string parameters s1...sn. We do not write all cases for the update of

the length of d, because there are many cases for calculating the length of a C

format string. Instead, we show a simplified update where length of d is the sum

of the string length of c plus the lengths of the parameters.

56

4.3.2 Test Generation

As discussed in Section 4.2, Splat explores all paths by iteratively finding

satisfying assignments for new path constraints representing unexplored paths.

In the implementation, each path is a sequence of integers representing branches

taken. Each branch id is mapped to a symbolic expression (if is not a constant)

representing the predicate associated with taking or not taking the branch. A trie

[Knu97] stores all previously explored paths and whether negation of a branch is

unsatisfiable or has already been explored. This allows Splat to use different

search strategies. For example, a depth-first search only requires storing one path

in the trie. The search terminates when all paths are either unsatisfiable or have

been explored.

Memory Safety. The splay tree of memory nodes track all allocated memory in

the heap and on the stack. For each pointer dereference *p, we should be able to

find, by calling find(p), the memory node that contains the pointer in the splay

tree. If we do not find a memory node, we have a memory safety violation. This

approach is similar to Valgrind’s Memcheck [NS07]. However, unlike Memcheck,

since the return address on the stack is not part of any memory node, we can

always detect buffer overflows that overwrite the return address. Note that if we

do not track symbolic state, Splat can be used as a runtime checker for memory

violations.

In addition, we explicitly add assertions about well-formedness of memory in

the code using the function assert(e). If during test generation, we can find a

satisfying assignment for the conjunction of the path constraints with the sym-

bolic expression ¬e, we have found a potential error. Since symbolic execution

can be imprecise, such a satisfying assignment is subsequently run as a new input

to confirm the bug and exhibit a concrete execution trace to the user.

57

For example in Figure 4.4, when we dereference a pointer, we generate the

assertion assert(p ≤ mn.a+mn.δ), where mn is the memory node for p. Failure

of this assertion indicates an input for which the pointer p points beyond its

memory node (and hence a memory error). This is a stricter approach to memory

safety by insuring the dereference occurs in the memory node pointed to by the

referent [JK97]. The referent refers to the valid address in the expression to be

dereferenced. For example in *(ptr + 5), ptr is the referent. If ptr points to a

character buffer of size 3, *(ptr + 5) will always be a violation of the referent

notion of memory safety. However, ptr + 5 may still be a valid address; if the

buffer is on the stack, ptr + 5 can point to some other variable allocated on the

stack.

Similar checks are performed for string operations as seen in Figure 4.5.

Whenever a string is copied into another buffer, a check is made to see if the

string length will exceed the size of the buffer. Whenever sprintf is called, the

length of the generated string is checked to see if it fits in the destination buffer.

4.3.3 Constraint Solving

We generate new inputs by finding satisfying assignments for path constraints

and constraints representing memory violations. We use STP, a bit accurate

SAT based decision procedure [GD07a]. This allows us to deal with widely-used

bit operators and arithmetic overflow. In our experience, arithmetic overflow has

been crucial in generating many memory safety violations.

A satisfying assignment for a symbolic length may go beyond the symbolic

prefix. Concrete buffer entries beyond the symbolic prefix are randomly chosen

characters (excluding the string terminator). Further we add additional con-

straints that make the symbolic length consistent with the symbolic prefix. The

58

01 GETSHORT (s, cp) { \

02 register u_char *t_cp = (u_char *)(cp); \

03 (s) = ((u_int16_t)t_cp[0] << 8) \

04 | ((u_int16_t)t_cp[1]) \

05 ; \

06 (cp) += INT16SZ; \

07 }

08

09 GETLONG (l, cp) { \

10 register u_char *t_cp = (u_char *)(cp); \

11 (l) = ((u_int32_t)t_cp[0] << 24) \

12 | ((u_int32_t)t_cp[1] << 16) \

13 | ((u_int32_t)t_cp[2] << 8) \

14 | ((u_int32_t)t_cp[3]) \

15 ; \

16 (cp) += INT32SZ; \

17 }

Figure 4.6: [Example] Buffer overflow due to arithmetic overflow

occurrence of the string terminator in the symbolic prefix affects the symbolic

length. Given a symbolic string length αk for the symbolic prefix α0α1 . . . αk−1,

we have the added constraints αi = 0 ⇒ αk = i for 0 ≤ i < k.

Figures 4.7 and 4.6 show a buffer overflow bug originating in the Bind DNS

server that demonstrates the need for a bit-accurate constraint solver. The bug

is caused by an arithmetic overflow in line 34. If dlen - n < 0, a huge amount

would be copied. This example requires the analysis to understand bit operators,

pointer arithmetic, and fixed-sized integers. To test this example, we create a

symbolic buffer with 100 symbolic values of size 1 byte each. Since we fill the msg

buffer entirely with symbolic values, the symbolic string length is not tracked.

Note that we could have made the two strings within the message have symbolic

lengths and saved many extra executions, but that would require knowledge of

the internals of rrextract.

Instead of listing all runs, we examine a run that reaches line 34. At line

34, suppose for the given run n = 13, cp is 0x40232504, eom is 0x40232568,

59

18 void rrextract(char *msg, int msglen) {

19 int len, n;

20 short type, dlen;

21 char *eom, *cp, expanded;

22 char data[MAXDATA*2];

23 eom = msg + msglen; cp = msg;

24 n = strlen (cp); if (n > 15) return;

25 cp += n; len += n;

26 GETSHORT(dlen, cp);

27 cp += 2; len += 2;

28 if (cp + dlen > eom) return;

29 GETSHORT(type, cp);

30 cp += 2; len += 2;

31 if (type != T_NXT) return;

32 n = strlen(cp); if (n > 15) return;

33 cp += n; cp1 = data;

34 memcpy(cp1, cp, dlen - n); // overflow

35 cp += (dlen - n); cp1 += (dlen - n);

36 }

Figure 4.7: [Example] Buffer overflow due to arithmetic overflow

dlen = αi << 8 | αi+1 and type = αi << 8 | αi+1. We want to find a satisfying

assignment to (αi << 8 | αi+1 − 13 >unsigned 1024) in conjunction with the path

constraint (αj << 8 | αj+1 = T NXT) ∧ (0x40232504 + αi << 8 | αi+1 ≤unsigned

0x40232568). Note that we must distinguish between the unsigned less-than

and the signed less-than operators. Given a decision procedure for bit-vectors,

a satisfying assignment can be found: for example dlen = 12 results in a 2GB

memcpy. In this example, if the underlying constraint solver was not bit accurate,

the error would be missed.

4.4 Evaluation

We demonstrate Splat on several programs. We ran Splat on benchmarks

representing real exploits [ZLL04] and found all bugs except two. Because the

benchmarks were not full programs, we also ran Splat on a module in the Snort

60

Program LOC Prefix Size Buggy Fixed

R
ea

l
E

x
p
lo

it
B

en
ch

-
m

ar
k
s

Bind 1 2.9K 100 100 0.02s 0.5s
Bind 2 3.1K 0 2048 0.1s 1.1s
Bind 3 2.5K 100 100 0.05s 0.1s
Bind 4 2.7K 0 2048 0.6s 0.6s
sendmail 1 1.9K 100 100 t/o t/o
sendmail 2 2.4K 0 2048 6.8s t/o
sendmail 3 2.0K 100 100 18.6s 1m16s
sendmail 4 2.4K 100 100 0.16s 1m49s
sendmail 5 2.1K 100 100 t/o t/o
sendmail 6 2.2K 100 100 0.04s 1m38s
sendmail 7 2.8K 100 100 0.05s 18.2s
WuFTP 1 2.4K 0 2048 0.3s 1.8s
WuFTP 2 2.6K 0 2048 0.03s 0.03s
WuFTP 3 2.3K 0 2048 0.4s 0.4s

P
ro

gr
am

s

snort 1.7K 100 100 13s 33s
WuFTP 36K 10 2048 4m 4m43s
nvds 12K 80 80 2m5s 2hr1m52s

Table 4.1: Experimental Results: Splat bug finding effectiveness. LOC is
lines of code. Prefix is the length of the symbolic prefix in bytes. Size is the
maximum length of the input string in bytes. Buggy is time spend finding the
bug. Fixed is time spent rerunning the test after fixing the error. t/o means
timeout after 2 hours.

intrusion detection system, the WuFTP server, and NVDS, a well-tested flash-

based memory system. All tested programs except NVDS had known memory

safety bugs. For the case studies, Splat found all known bugs and 2 unknown

bugs in NVDS.

Table 4.1 shows the results. All experiments were performed on a 2.33GHz

Intel Core 2 Duo with 2GB of RAM. Each experiment contains both the program

containing the bug and the program with the bug fixed. The numbering of each

benchmark corresponds to the same numbering as the paper [ZLL04] describing

61

Symbolic Length

Program Prefix Size Buggy Fixed Cov

Bind 2 0 2048 0.1s 1.1s 40%
Bind 4 0 2048 0.6s 0.6s 55%
sendmail 2 0 2048 6.8s t/o 59%
WuFTP 1 0 2048 0.3s 1.8s 44%
WuFTP 2 0 2048 0.03s 0.03s 23%
WuFTP 3 0 2048 0.4s 0.4s 39%
WuFTP 10 2048 240s 283s 43%

Table 4.2: Experimental Results: Comparing the length abstraction with a
fully symbolic input string on programs with string manipulations: experiments
with length abstraction. Prefix is the length of the symbolic prefix in bytes.
Size is the maximum length of the input string in bytes. t/o means timeout
after 2 hours for the benchmarks or 24 hours for the case study. Cov is the
branch coverage for the testing fixed programs run until completion or timeout.

the benchmarks. We ran Splat on both buggy and fixed versions, because

enumeration of the buggy program stops when the bug is found and depending

on the location of the bug, only a fraction of paths are enumerated. Table 4.1 the

time spent to find the bugs in the buggy program, and the time spent enumerating

paths in the fixed program.

For each program, the representation of the input string was chosen with the

shortest possible symbolic prefix that can find the bug. The maximum size of the

input and the size of the symbolic prefix are shown in Table 4.1. If the size of

the symbolic prefix equals the maximum size, then the input was fully symbolic.

A symbolic prefix of size zero was successful in finding bugs in 6 out of the 14

benchmarks. A symbolic prefix of 10 characters was successful in finding bugs for

the WuFTP case study. The other benchmarks did not use the string.h library

thus requiring the input to be fully symbolic.

For programs that utilized the string.h library, we demonstrated how the

length abstraction allows directed testing to scale to larger more complex pro-

62

Fully Symbolic

Program Prefix Size Buggy Fixed Cov

Bind 2 100 2048 0.61s 32.5s 40%
Bind 4 100 2048 t/o t/o 55%
sendmail 2 100 2048 3.4s t/o 59%
WuFTP 1 100 2048 2.9s 22.5s 44%
WuFTP 2 100 2048 t/o t/o 38%
WuFTP 3 100 2048 0.7s 1.16s 39%
WuFTP 1024 2048 t/o t/o 29%

Table 4.3: Experimental Results: Comparing the length abstraction with a
fully symbolic input string on programs with string manipulations: fully symbolic.
Prefix is the length of the symbolic prefix in bytes. Size is the maximum length
of the input string in bytes. t/o means timeout after 2 hours for the benchmarks
or 24 hours for the case study. Cov is the branch coverage for the testing fixed
programs run until completion or timeout.

grams. We show that the length abstraction allows directed testing to find er-

rors in Bind 4, WuFTP 2, and the WuFTP case study that could not be found

with a fully symbolic input within our given testing budget. We also show that

Splat with the length abstraction enumerates fewer paths without sacrificing

branch coverage.

4.4.1 Finding Memory Safety Violations

Real Exploit Benchmarks. The first 14 rows of Table 4.1 are real exploit

benchmarks [ZLL04]. These benchmarks are small stripped down versions of

Bind, Sendmail, and WuFTP, specifically designed to test buffer overflow de-

tection tools. These benchmarks were independently developed to be small

but realistic and representative of known buffer overflows. They have been

shown to substantially challenge dynamic and static buffer overflow detection

tools [ZLL04, ZLL05]. In these thorough evaluations, four static detection tools

63

were no better than randomly guessing buffer overflow warnings for programs

with or without such errors. Only one static tool (Polyspace) was marginally

better but produced 1 warning for every 12 lines of code. Splat successfully

found errors in all benchmarks except two, without reporting any false warnings.

The original benchmarks contained inputs that would result in finding the

exploit. These inputs were removed and replaced with symbolic inputs. For the 6

benchmarks that exclusively used the string.h library, we represented the whole

input with only a symbolic length. For all other benchmarks, we represented all

characters of the input with 100 symbolic characters.

The Bind programs represent several buffer overflows in the Bind DNS Server.

Bind 1 contained a memcpy that had an arithmetic expression in the size argu-

ment that could overflow. Bind 2 and 3 had memcpy size arguments that were

improperly bound-checked. Bind 4 contained a sprintf without a bounds check.

Sendmail represent bugs in the Sendmail email server. Sendmail 1 did not incre-

ment a counter as it processed the “¡” character. Sendmail 2 contains a copy to

a fixed sized buffer without a bounds check. Sendmail 3 has an index that is not

reset after reading a return character. Sendmail 4 does not check the size if a

return character is read. Sendmail 5 contains an improper bounds check for se-

quences of “/”. Sendmail 6 contains an arithmetic underflow. Sendmail 7 allows

an arbitrary size to be passed as a bound for strncpy. WuFTP represent bugs

in the WuFTP ftp server. WuFTP 1 and WuFTP 3 contain unchecked strcpy or

strcat functions. WuFTP 2 contains an incorrect bounds calculation as shown in

Figure 4.2.

All benchmarks finish quickly except Sendmail 1 and 5 which timeout. To

reach the bug, Sendmail 5 requires a long string of “/” characters of some partic-

ular length while Sendmail 1 requires repeated occurrences of the pattern “¡¿”.

64

Therefore, Sendmail 1 and 5 require the input to be fully symbolic. In either case,

the buggy input was difficult to find because both benchmarks require finding a

particular long input from millions of inputs that all lead to different paths.

Snort. We tested the “Back Orifice” rootkit detector module in the Snort intru-

sion system that had a known buffer overflow. Snort modules have well-defined

inputs that describe a packet. Splat can model this packet as a symbolic buffer.

The bug occurs because the length of the packet field is not checked and later used

as a bound on a while-loop that reads the contents of the packet. Splat quickly

finds this buffer overflow.

WuFTP. We tested a version of the WuFTP server with a buffer overflow in

the pathname normalization function. The example in Section 4.1 is a simplified

version of that bug. Although WuFTP processes packets, the contents of the

packets are strings that are interpreted as FTP commands. We test WuFTP by

replacing the packet with a symbolic string with a 10 character symbolic prefix

and a symbolic length. To skip the parser, we make several keywords in the string

concrete and others symbolic. These keywords are defined by the underlying

grammar. The details of construction were presented without the memory and

string lengths fully tracked in a previous study[MX07]. Running Splat on each

of these strings finds the error after 240 seconds.

NVDS. NVDS is a non-volatile storage system for flash memory that had been a

target of substantial random differential testing [GHJ07]. We tested NVDS on an

emulated system in RAM. Testing was different from the previous experiments,

because NVDS did not just accept a string as an input. To test NVDS, we

formatted the emulated flash, wrote to it three times and read from it once.

The parameters for the writes and reads were symbolic. We found overflows in

the memory emulating the flash that resulted from an arithmetic overflow in the

65

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 50 100 150 200

B
ra

n
c
h

 C
o

v
e

ra
g

e

Paths Enumerated

splat-length
splat-full

Figure 4.8: Coverage for Bind 2: Splat-length enumerates 34 unique paths in
Bind 2 with a random string and a symbolic length. Splat-full must enumerate
210 paths with a symbolic input of 100 bytes.

bound checking in both the write and read functions.

4.4.2 Length Abstractions

For the 6 benchmarks and the 1 case study where string operations were restricted

to the C string library, we ran Splat with the input string being represented

by a small prefix (10 characters for the WuFTP case study and no prefix for the

benchmarks) and a symbolic string length. We compared how Splat performs

when the input string was symbolically represented by its length (Splat-length)

with how Splat performed with the input string represented by all symbolic

characters (Splat-full). Splat-full represents previous work in test generation tools

that tries to completely search all paths up to some size input. Splat-full required

100 symbolic characters as the input for the benchmarks and 1024 characters as

the input for WuFTP. These sizes were chosen to be slightly greater than the

minimum string length that could set off the error, thus giving Splat-full the best

chance possible in finding the error. In our experiments, Splat-length performed

faster than Splat-full in finding errors as seen in Table 4.3 and Table 4.2— showing

66

the effectiveness of using a string length abstraction.

In Bind 4 and WuFTP 2, the fully symbolic string technique could not find

the bug within 2 hours while Splat-length found both errors in less than a second.

In the WuFTP case study, Splat-full could not find the error within 24 hours. In

all 3 tests, Splat-full was stuck in generating input not relevant to reaching the

error.

For example, Bind 4 contains many sprintf of the form, where buf is a fixed

1000 byte buffer and all other arguments are inputs:

sprintf(buf, "%s: query(%s) %s (%s:%s)",

sysloginfo, queryname, complaint, dname,

inet_ntoa(data_inaddr(a_rr->d_data)));

Suppose sysloginfo, queryname, complaint, and dname are all string inputs

with maximum length of 250 while (data inaddr(a rr->d data)) was a 32-bit

integer input. To check for an overflow, Splat-length solves the constraint:

strlen(sysloginfo) + strlen(queryname)

+strlen(complaint) + strlen(dname)

+15 + 15 + 1 > 1000

The constraint has been simplified to include the string length of the address

representing the 32-bit integer as 15, the length of the format string as 15, string

terminator as 1 and the size of buf as 1000.

While Splat-length can solve the string lengths and generate an input that

will cause the memory violation, a tool without the length abstraction must

rely on a complete search. If we fix the integer input, Splat-full requires placing

the string terminator at almost all locations in each of the four strings in the

67

01 char pathspace[MAXPATHLEN];

02 char old_mapped_path[MAXPATHLEN];

03 char mapped_path[MAXPATHLEN] = "/";

04 int mapping_chdir(char *orig_path) {

05 char *path = &pathspace[0];

06 strcpy(old_mapped_path, mapped_path);

07 strcpy(path, orig_path);

08 . . .

09 }

Figure 4.9: [Example] WuFTP 1: strcpy at line 07 can overflow

worst case. If each string can have a length of 250, there are around 2504 or

approximately 4 billion strings to enumerate. Furthermore, instead of tracking

just 4 symbolic constants representing each string length, 1000 symbolic constants

must be tracked — leading to a substantial cost increase in constraint solving. In

our Bind 4 experiments, we tried to give Splat-full a better chance of finding the

error by reducing the input string sizes such that four input strings of length 24

would result in a buffer overflow, but this also led to a time-out as seen in Table

4.3.

The other experiments involve copying into a buffer without doing a proper

check. Figure 4.9 shows a representative memory violation in WuFTP 1 where

the strcpy on line 14 may overflow because the input is not bound checked

before. Splat-length quickly finds these errors by representing the input with just

a symbolic length. However, Splat-full can also find the error by enumerating all

string lengths up to the maximum length of the input. Because the 6 benchmarks

are small snippets of the real exploit, the Splat-full can terminate and find the

error. In real programs, directed testing with a fully symbolic input will unlikely

find the bug, because it would be stuck enumerating many irrelevant paths of

inputs with varying string lengths.

Since a fully symbolic search may get lost in a large search space, Splat-

68

length also gets better branch coverage, i.e., number of branches explored / total

branches, given a limited test budget. As seen in Table 4.2 and Table 4.3, in the

WuFTP case study, Splat-length’s 283 second search had better coverage than the

fully symbolic search timing out after 24 hours. Splat-length reaches higher branch

coverage faster than Splat-full. Figure 4.8 shows how branch coverage increases

when Splat-length and Splat-full are run on Bind 2. Splat-length only enumerating

34 unique paths results in the same branch coverage as Splat-full enumerating

210 unique paths. As Splat-full is unrolling loops to generate new paths, no new

branches are covered. Although it is expected that given substantial resources

that Splat-full would get better branch coverage, only in the case of WuFTP 2 did

the fully symbolic string approach get better coverage (46/120 versus 28/120).

Note that all such experiments are not close to full branch coverage because

the benchmarks represent snippets of code from the full program where many

paths are unreachable and we do not model all inputs such as networking or

configuration options in our WuFTP case study.

4.5 Related Work

Many approaches to detect memory safety violations statically or dynamically

have been proposed. Splat combines ideas from several of those with test input

generation.

Runtime Checking. Runtime checkers detect memory safety violations of spe-

cific execution runs but require a test input to trigger the violation. For such

approaches, there is a trade-off between being able to detect the violation and

performance. Valgrind [SN05] uses one bit for each address to represent if it is

allocated or not. If an invalid address is accessed, a memory safety violation is re-

ported. This only detects accesses to unallocated memory, so the return address

69

of a function on the stack can still be overwritten and undetected. Jones and

Kelly [JK97] implemented a memory safety checker in gcc that adds instrumen-

tation to check whether an address evaluated from some expression containing an

address p still points to the same buffer as p. CRED [RL04] extends Jones and

Kelly by checking bounds only before a memory dereference and focuses only on

string operations. If Splat was run without input generation, Splat would be

similar to the CRED approach with additional instrumented libraries.

Larson and Austin [LA03] extends runtime checking by finding errors that

may occur along the same control path of the supplied input but with a dif-

ferent input. Their memory model [LA03] associates each buffer index with a

range, and each buffer with a string length and buffer size that are updated sym-

bolically. Splat tracks similar constraints but is more precise because [LA03]

conservatively represents each range and size with an integer instead of a sym-

bolic expression. Also [LA03] does not perform test generation and may generate

false alarms when symbolic execution is imprecise.

Static Analysis. In contrast to dynamic analysis, static analysis runs on all

paths of a program and does not require any test inputs. However, they typically

generate (many) false positives. CSSV [DRS03] converts string manipulation to

integer operations and performs an integer analysis to insure string operations

remain within proper bounds. Although false positives were reported to be few,

manual summaries are needed for functions and the integer analysis was expen-

sive. Archer [XCE03] tracks linear relationships between variables and automat-

ically generates function summaries by inferring relationships between function

parameters by various heuristics. Boon [WFB00] uses a flow insensitive analysis

for string manipulations errors which is fast but very imprecise. A comparison

between various static tools showed that none were very effective in finding real

70

buffer overflows, either not finding the errors or generating too many false pos-

itives [ZLL04]. Splat ’s symbolic execution of string lengths was inspired by

static analyses that track only lengths [DRS03, XCE03, WFB00].

Directed Testing. The idea of path exploration using both symbolic and con-

crete execution is from directed testing tools such as DART [GKS05], CUTE

[SMA05], EXE [CGP06] and SAGE [GLM08]. Recent papers [GLM07, JSS07,

CGP06] also suggest to systematically inject assertions in programs during di-

rected test generation in order to detect memory safety violations and other

standard programming errors, such as division by zero and integer overflows. Our

contribution is to use symbolic length abstraction and symbolic prefixes of input

buffers to improve scalability of automatic test generation for buffer overruns.

Underapproximation. To allow Splat to effectively find bugs and finish

within a reasonable amount of time, Splat uses an underapproximation that

leaves some input suffixes random but tracks the length of the string input sym-

bolically. In the context of test generation, different underapproximations involv-

ing heap shapes have been explored in Java Pathfinder [VPP06]. Our experiments

with Splat show the new underapproximation using symbolic string lengths and

buffer sizes seems to be effective in finding buffer overflows in C programs.

71

CHAPTER 5

Reducing Test Inputs with Control and Data

Dependencies

In this chapter, we explore how to reduce the number of paths explored in concolic

execution without sacrificing completeness by usng control and data dependen-

cies. In many applications, the inputs can be partitioned into “non-interfering”

blocks such that symbolically solving for each input block while keeping all other

blocks fixed to concrete values can find the same set of assertion violations as

symbolically solving for the entire input. This can greatly reduce the number of

paths to be solved (in the best case, from exponentially many to linearly many

in the number of inputs). We present an algorithm that combines test input

generation by concolic execution with dynamic computation and maintenance of

information flow between inputs. Our algorithm iteratively constructs a partition

of the inputs, starting with the finest (all inputs separate) and merging blocks

if a dependency is detected between variables in distinct input blocks during

test generation. Instead of exploring all paths of the program, our algorithm

separately explores paths for each block (while fixing variables in other blocks to

random values). In the end, the algorithm outputs an input partition and a set of

test inputs such that (a) inputs in different blocks do not have any dependencies

between them, and (b) the set of tests provides equivalent coverage with respect

to finding assertion violations as full concolic execution.

72

void test(int a1, int a2,
. . .,
int an) {

1: if (a1 = 0) a1 := 1;
2: if (a2 = 0) a2 := 1;

. . .
n: if (an = 0) an := 1;

n + 1: if (a1 = 0) error();
n + 2: if (a2 = 0) error();

. . .
2n: if (an = 0) error();
}

00 void free(int A[], int count[]) {

01 for (int i = 0; i < N; i++) {

02 old_count[i] = count[i];

03 }

04 for (int i = 0; i < N; i++) {

05 if (A[i] != 0)

06 count[i]++;

07 }

08 for (int i = 0; i < N; i++) {

09 if (A[i] != 0)

10 assert(count[i]==old_count[i]+1);

11 }

12 }

Figure 5.1: [Example] Many independent inputs: (a) Example test (b) Example
free

We develop a technique that exploits the independence between different parts

of the program input to reduce the number of paths needed to be explored during

test generation.

As a simple example, consider the function test shown in Figure 5.1(a).

While there are 2n syntactic paths through the code, we quickly recognize that

it is sufficient to check only 2 · n paths: two each for each of the inputs a1, a2,

. . ., an being zero or non-zero. In particular, we conclude that error() is not

reachable based only on these paths. The additional paths through the program

do not add any more “interesting” behaviors, as the inputs are non-interfering:

there is no data or control dependency between any two distinct inputs ai, aj

for i 6= j. This indicates that by generating tests one independent input at

a time (while holding the other inputs to fixed values), we can eliminate the

combinational explosion of testing every arrangement of inputs, in this case,

from an exponential number of paths (2n for n inputs) to a linear number (2 ·n),

while retaining all interesting program behaviors (e.g., behaviors that can cause

assertion violations or behaviors that lead to an error). While the above example

is artificial, there are many interesting examples where the input space can be

73

partitioned into independent and non-interfering components, either through the

application semantics (e.g., blocks in a file system, packet headers in network

processors, permission-table entries in memory protection schemes) or due to

security and privacy reasons (e.g., independent requests to a server).

We present an automatic test generation algorithm FlowTest that formalizes

and exploits the independence among inputs. The main idea of FlowTest is to

compute control and data dependencies among variables dynamically while per-

forming concolic execution, and to use these dependencies to keep independent

variables separated during test generation.

FlowTest maintains a partitioning of the program inputs (where two variables

in different blocks are assumed not to interfere), and generates tests by symboli-

cally treating variables in each block in isolation while holding variables in other

blocks to fixed values.

In case the partition does denote non-interfering sets of variables, and all pro-

gram executions terminate, the test generation is relatively sound: any assertion

violation detected by basic concolic execution is detected. To check for data or

control dependencies between variables in separate blocks, FlowTest maintains a

flow map during test generation which associates each variable with the set of

input blocks in the current partition which can potentially influence the value of

the variable. If there is some entry in the flow map which contains more than one

input block, this indicates “information flow” between these input blocks. In this

case, these input blocks are merged and test generation is repeated by tracking

this larger block of inputs together.

The algorithm terminates when the input partitions do not change (and tests

have been generated relative to this input partition). For example test, starting

with the initial optimistic partition in which each variable is in a separate par-

74

tition, FlowTest will deduce that this partition is non-interfering, and generate

test cases that explore the 2n interesting paths. In contrast, concolic execution

explores 2n paths.

We have implemented FlowTest on top of the Splat directed testing im-

plementation [XMG08] to test and check information flow in C programs. The

benefit of FlowTest is demonstrated on a memory allocator, a memory protection

scheme, an intrusion detector module and a packet printer. FlowTest dramatically

reduces the number of paths explored for all case studies without increasing much

overhead per path due to flow-set generation and dependency checking. In all

cases, FlowTest reduced the overall time for input generation and the number of

paths generated. In two cases, FlowTest cut input generation in half. In one case,

FlowTest terminated in less than ten minutes when the basic concolic execution

algorithm failed to terminate even after a day.

Related Work. Test generation using concolic execution has been successfully

applied to several large programs [GKS05, SMA05, CGP06, XMG08, CDE08].

However, path explosion has been a fundamental barrier. Several optimizations

have been proposed to prune redundant paths, such as function summarization

[God07, AGT08] and the pruning of paths that have the same side-effects of some

previously explored path through read-write sets (RWSets) [BCE08]. FlowTest is

an optimization orthogonal to both function summarization and RWSets.

Program slicing has been used to improve the effectiveness of testing and static

analysis by removing irrelevant parts of the program [Wei79, Tip95, KL88, KY94].

One way to view FlowTest is as simultaneous path exploration by concolic exe-

cution and dynamic slicing across test runs: for each input block, the algorithm

creates dynamic slices over every run, and merges input blocks that have com-

mon data or control dependencies. In contrast to running test generation on

75

statically computed slices, our technique, by computing slices dynamically and

on executable traces, can be more precise.

Our optimization based on control and data dependencies is similar to check-

ing information flow [Den76, MPL04, CLO07]. For example, dynamic information

flow checkers [MPL04, CLO07] are based on similar dependency analyzes.

5.1 Definitions

We illustrate our algorithm by extending our concolic execution algorithm pre-

sented in Chapter 2.

Partitions. A partition Π(X) of a set X is a set of pairwise disjoint subsets of

X such that X =
⋃

Y ∈Π(X) Y . We call each subset in a partition a block of the

partition. For a variable x ∈ X, we denote by Π(X)[x] the block of Π(X) that

contains x.

Given a partition Π(X) and a subset Y ⊆ Π(X) of blocks in Π(X), the

partition !(Π(X), Y) obtained by merging blocks in Y is defined as (Π(X) \

Y) ∪ {∪b∈Y b}.

A partition Π(X) refines a partition Π′(X) if every block in Π′(X) is a union

of blocks in Π(X). In this case we say Π′(X) is as coarse as Π(X). If Π′(X) is as

coarse as Π(X) but Π′(X) 6= Π(X), we say Π′(X) is coarser than Π(X). When

the set X is clear from the context, we simply write Π.

Control and Data Dependence. For two locations ℓ, ℓ′ ∈ L we say ℓ′ post-

dominates ℓ if every path from ℓ to ℓhalt contains ℓ′. We say ℓ′ is the immediate

post-dominator of ℓ, written ℓ′ = idom(ℓ), if (1) ℓ′ 6= ℓ, (2) ℓ′ post-dominates ℓ,

and (3) every ℓ′′ that post-dominates ℓ is also a post-dominator of ℓ′. It is known

that every location has a unique immediate post-dominator [Muc97], and hence

76

Algorithm 3: FlowTest

Input: Program P , initial partition Π0(X)
local partitions Π and Πold of X ;1

local flow map flow ;2

Π := Π0(X) ;3

Πold := ∅ ;4

flow(x) := {Π[x]} for x ∈ X;5

while Πold 6= Π do6

Πold := Π;7

for I ∈ Πold do8

input := λx ∈ X0.random();9

flow := Generate(P,Π, I,flow , input ,−1);10

end11

for each x ∈ X do12

Π := !(Π,flow(x));13

end14

end15

the function idom(ℓ) is well-defined for every ℓ 6= ℓhalt.

A node ℓ is control dependent on ℓ′ if there exists some executable path

ℓ0 . . . ℓ
′ . . . ℓ such that idom(ℓ′) does not appear between ℓ′ and ℓ in the path.

For an expression e, we write Use(e) for the set of variables in X occurring

in e. For variables x, y ∈ X, we say x is data dependent on y if there is some

executable path to a location ℓ such that op(ℓ) is x := e and y ∈ Use(e).

5.2 The FlowTest Algorithm

Overall Algorithm.

We illustrate our algorithm by extending our concolic execution algorithm

presented in Chapter 2. The algorithm is described on the same imperative

language from Chapter 2.

Algorithm 3 shows the overall FlowTest algorithm. It takes as input a pro-

77

Algorithm 4: Generate

Input: Program P , partition Π, block I ∈ Π, flow map flow
Input: input input , last explored branch last
(ξ,flow) := Execute(P,Π, I,flow , input);1

index := Length(ξ) − 1;2

while not empty(ξ) ∧ index 6= last do3

p := pop(ξ);4

if ξ ∧ ¬p is satisfiable then5

input := Solve(ξ,¬p);6

flow := Generate(P,Π, I,flow , input , index);7

index := index − 1;8

end9

return flow ;10

gram P and an initial partition Π0(X) of the set X of variables, and applies test

generation with iterative merging of partitions. It maintains a “current” parti-

tion Π of the inputs, which is updated based on control and data dependence

information accrued by test generation. The “old” partition Πold is used to check

when a round of test generation does not change the partition. Initially, Π is the

input partition Π0(X), and Πold is the empty-set (lines 3, 4).

The main data structure to store dependency information is called a flow map,

flow : X → 2Π, a function mapping each variable x ∈ X to a set of blocks of the

current partition Π. Intuitively, flow(x) denotes the set of input blocks that are

known to influence (through data or control dependence) the value of x. Initially,

we set flow(x) = {Π[x]} for each x ∈ X (line 5).

The main loop (lines 6–14) implements test generation and iterative merging

of partitions. The procedure Generate (described next) implements a standard

path exploration algorithm using concolic execution, but additionally updates

the flow map. Generate is called to generate tests for each block I of the current

partition Π (lines 8–11). In each call, the variables in the block I are treated sym-

78

bolically, and every other variable is given a fixed, random initial value. Generate

returns an updated flow map which is used to merge blocks in Π to get an up-

dated partition (lines 12–14). For every x ∈ X such that |flow(x)| > 1, the blocks

in flow(x) are merged into one block to get a new coarser partition. The main

loop is repeated with this coarser partition until there is no change.

Algorithm Generate. Algorithm 4 describes the path enumeration algorithm,

and is similar to the path enumeration schemes in [GKS05, SMA05, CGP06].

It takes as input the program P , a partition Π of the inputs of P , a block I

of the partition, an input input mapping input variables to initial values, and

an index last tracking the last visited branch. It performs test case generation

using a depth first traversal of the program paths using concolic execution. In

the concolic execution, only inputs from I are treated symbolically and the rest

of the inputs are set to fixed concrete values (chosen randomly). The procedure

returns an updated flow map.

The main loop of Algorithm Generate implements a recursive traversal of

program paths. In each call to Generate, the function Execute (described next) is

used to perform concolic execution along a single path and update the flow map.

The returned path constraint ξ is used to generate a sequence of new inputs in

the loop (lines 3–9). This is done by popping and negating the last constraint

in the path constraint and generating a new input using procedure Solve. The

new input causes the program to explore a new path: one that differs from the

last one in the direction of the last conditional branch. The function Generate is

recursively invoked to explore paths using this new input (line 7).

Notice that the pure concolic execution algorithm is captured by the call

Generate(P, {X}, X, λx.{X}, λx.0,−1).

Algorithm Execute. Algorithm 5 adds computing data and control dependencies

79

Algorithm 5: Execute

Input: Program P , partition Π, block I ∈ Π, flow map flow , input i
Result: Path constraint ξ and updated flow map flow
for x ∈ X do1

M(x) := i(x); if x ∈ I then µ(x) := αx;2

end3

ξ := emptyStack; ℓ := ℓ0;4

Ctrl(ℓ0) := ∅;5

while op(ℓ) 6= halt do6

switch op(ℓ) do7

case l := e8

M := M [l 7→M(e)]; µ := µ[l 7→ µ(e)]; ℓ := N (ℓ);9

Ctrl(N (ℓ)) := Ctrl(ℓ) \ RmCtrl(Ctrl(ℓ),N (ℓ));10

flow(l) := flow(l) ∪
⋃

x∈Use(e) flow(x) ∪
⋃

〈ℓ′,x′〉∈Ctrl(N (ℓ)) flow(x′);11

end12

case if(x)then ℓ′ else ℓ′′13

if M(x) = 0 then14

ξ := push(µ(x) = 0, ξ); ℓ := ℓ′′;15

Ctrl(ℓ′′) := (Ctrl(ℓ) ∪ {〈ℓ, x〉}) \ RmCtrl(Ctrl(ℓ) ∪ {〈ℓ, x〉}, ℓ′′);16

flow(x) := flow(x) ∪
⋃

〈ℓ̂,y〉∈Ctrl(ℓ′′) flow(y);17

else18

ξ := push(µ(x) 6= 0, ξ); ℓ := ℓ′;19

Ctrl(ℓ′) := (Ctrl(ℓ) ∪ {〈ℓ, x〉}) \ RmCtrl(Ctrl(ℓ) ∪ {〈ℓ, x〉}, ℓ′);20

flow(x) := flow(x) ∪
⋃

〈ℓ̂,y〉∈Ctrl(ℓ′) flow(y);21

22

end23

end24

end25

return(ξ, f low);26

along a single program path to concolic execution. It takes as input the program

P , a concrete input i, and a partition Π. It returns a path constraint ξ and an

updated flow map flow . Notice that the path constraint is maintained as a stack

of predicates (instead of as a conjunction of predicates). This helps in simplifying

the backtracking search in Generate.

Algorithm Execute, ignoring lines 10, 11, 16, 17, 20 and 21, is identical to

80

the concolic execution algorithm discussed in Chapter 2 It executes the program

using both the concrete memory M and the symbolic memory µ. The extra lines

update the flow map.

We now describe the working of Algorithm Execute. The concrete memory is

initialized with the concrete input i, and the symbolic memory is initialized with

a fresh symbolic constant αx for each x ∈ I (lines 1–3). The path constraint is

initialized to the empty stack and the initial control location is ℓ0 (line 4).

The main loop of Execute (lines 6–25) performs concrete and symbolic evalu-

ation of the program while updating the flow map. The loop executes while the

program has not terminated (or, in practice, until some resource bound such as

the number of steps has been exhausted).

We first ignore the update of the flow map and describe how the concrete and

symbolic memories and the path constraint are updated in each iteration.

If the current location is ℓ and the current operation is an assignment l := e

(lines 8–12), the concrete memory updates the value of l toM(e) and the symbolic

memory updates it to µ(e) (line 9). Finally, the control location is updated to be

N (ℓ).

If the current location is ℓ and the current operation is if(x) then ℓ′ else ℓ′′,

the updates are performed as follows (lines 13–23). The concrete memory M

and symbolic memory µ remain unchanged. If M(x) 6= 0, then the constraint

µ(x) 6= 0 is pushed on to the path constraint stack ξ, and the new control location

is ℓ′ (line 19). If M(x) = 0, then the constraint µ(x) = 0 is pushed on to the

path constraint stack ξ, and the new control location is ℓ′′ (line 15).

We now describe how the control dependencies and the flow maps are up-

dated. We use a helper data structure Ctrl mapping each location to a set

of pairs of locations and expressions. This data structure is used to main-

81

tain the set of conditionals on which a location is control dependent along

the current execution. At the initial location ℓ0, we set Ctrl(ℓ0) = ∅ (line 5).

Each statement updates the set Ctrl. We use the following definition. Let

L ⊆ L × X be a set of pairs of locations and variables. Let ℓ ∈ L. We de-

fine RmCtrl(L, ℓ) = {〈ℓ′, x〉 ∈ L | ℓ is the immediate post-dominator of ℓ′}. Intu-

itively, these are the set of conditionals that on which ℓ is no longer control

dependent.

Suppose the current location is ℓ and op(ℓ) is the assignment l := e. The

set Ctrl(N (ℓ)) consists of the set Ctrl(ℓ) minus the set of all locations which are

immediate post-dominated by N (ℓ) (line 10). The flow map for the variable l

is updated as follows (see line 11). There are three components in the update.

The first component is flow(l), the flow computed so far. The second component
⋃

x∈Use(e) flow(x) captures data dependencies on l due to the assignment l := e:

for each variable x appearing in e, it adds every input block known to influence

x (the set flow(x)) to flow(l). The third component captures dependencies from

controlling conditionals. The controlling conditionals for N (ℓ) and their condi-

tional variables are stored in Ctrl(N (ℓ)). For every 〈ℓ′, x′〉 ∈ Ctrl(N (ℓ)), we add

the set flow(x′) of inputs known to influence x′ to flow(l).

Now suppose the current location is ℓ and op(ℓ) is if(x) then ℓ′ else ℓ′′. In

this case, depending on the evaluation of the conditional x, the execution goes

to ℓ′ or ℓ′′ and the corresponding data structure Ctrl(ℓ′) or Ctrl(ℓ′′) is updated to

reflect dependence on the conditional x (lines 16, 20). The pair 〈ℓ, x〉 is added to

the set of controllers to indicate that the conditional may control execution to ℓ′

and ℓ′′, and as before, the set of conditionals post-dominated by ℓ′ (respectively,

ℓ′′) are removed. Finally, for each 〈ℓ̂, y〉 in Ctrl(ℓ′) (respectively, Ctrl(ℓ′′)), the set

of input blocks flow(y) is added to the flow map for x.

82

The updated flow map is returned at the end of the loop.

Algorithm solve. Finally, procedure solve takes as input a stack of constraints

ξ and a predicate p, and returns a satisfying assignment of the formula

∧

φ∈ξ

φ ∧ p

using a decision procedure for the constraint language. In the following, we

assume that the decision procedure is complete: it always finds a satisfying as-

signment if the formula is satisfiable.

Relative Soundness. As we have seen, FlowTest can end up ex-

ploring many fewer paths than pure concolic execution (i.e., the call

Generate(P, {X}, X, λx.{X}, λx.0,−1)). However, under the assumption that all

program executions terminate, we can show that FlowTest is relatively sound:

for every location ℓ, if concolic execution finds a feasible path to ℓ, then so does

FlowTest. In particular, if all program executions terminate, then FlowTest does

not miss any assertion violation detected by concolic execution.

We say a location ℓ̂ is reachable in FlowTest(P,Π0) or

Generate(P, {X}, X, λx.{X}, λx.0,−1) if the execution reaches line 7 of

Execute with ℓ = ℓ̂. Clearly, a location reachable in either algorithm is reachable

in the CFG by an executable path.

Theorem 1. Let P = (X,X0,L, ℓ0, op, E) be a program and Π0 an ini-

tial partition of the inputs of P . Assume P terminates on all inputs.

If FlowTest(P,Π0) terminates then every location ℓ ∈ L reachable in

Generate(P, {X}, X, λx.{X}, λx.0,−1) is also reachable in FlowTest(P,Π0).

We sketch a proof of the theorem. We prove the theorem by contradiction.

Suppose that there is a location ℓ that is reachable in concolic execution but not

83

in FlowTest. Fix a path π = ℓ0 → ℓ1 → . . . → ℓk executed by concolic execution

such that ℓk is not reachable in FlowTest but each location ℓ0, . . . , ℓk−1 is reachable

by FlowTest. (If there are several such paths, choose one arbitrarily.) Notice that

since π is executed by concolic execution, the path constraints resulting from

executing π is satisfiable. Also, op(ℓk−1) must be a conditional, since if it were

an assignment and ℓk−1 is reachable in FlowTest, ℓk would also be reachable in

FlowTest.

Since every program execution terminates, we can construct a path slice

[JM05] of π, i.e., a subsequence π′ of operations of π, with the following proper-

ties: (1) every initial memory M0 that can execute π can also execute π′, and (2)

every initial memory M0 that can execute π′ is such that there is a (possibly dif-

ferent) program path π′′ from ℓ0 to ℓk such that M0 can execute π′′. Such a slice

can be computed using the algorithm from [JM05]. Since the path constraint for

π is satisfiable, so is the path constraint for π′. Let V(π′) be the set of variables

appearing in π′, i.e., V(π′) is the smallest set such that for every operation l := e

in π′ we have {l} ∪ Use(e) ⊆ V(π′) and for every operation if(x) then ℓ′ else ℓ′′

in π′, we have x ∈ V(π′).

We show that each variable in V(π′) is eventually merged into the same input

block. We note that every conditional operation in π′ controls the next operation

in π′ and every assignment operation l := e in π′ either uses l in a subsequent

assignment or in a conditional. Now, since every location along π′ is reachable,

we can show (by induction on the length of π′) that all variables in V(π′) are

merged into the same input block. Call this block I.

Consider the call to Generate made by FlowTest with the input block I. This

call is made by FlowTest in the iteration after I is created. Since π′ is a path slice

of π, and π is executable, we know that the sequence of operations in π′ can be

84

executed by suitably setting values of variables in I, no matter how the rest of

the variables are set. Moreover, since the path constraint for π is satisfiable, so

is the path constraint for π′. Since every execution terminates, the backtracking

search implemented in Generate is complete (modulo completentess of the decision

procedure), so the call to Generate using input block I must eventually hit ℓk.

This is a contradiction, since this shows ℓk is reachable in FlowTest.

While the theorem makes the strong assumption that all program paths termi-

nate, in practice this is ensured by setting a limit on the length of paths simulated

in concolic execution. In fact, if the program has an infinite execution, then the

concolic execution algorithm does not terminate: it either finds inputs that show

non-termination (and gets stuck in Execute), or finds an infinite sequence of longer

and longer program execution paths.

5.3 Example

We illustrate the working of FlowTest on a simplified version of a virtual memory

page-free routine in an OS kernel (the actual code was tested in our experiments).

Figure 5.1(b) shows the free function which takes as input two arrays of integers

A and count each of size N , a fixed constant. For this example, let us set N = 2.

For readability, we use C-like syntax and an array notation as a shorthand for

declaring and using several variables (our simple language does not have arrays,

but our implementations deals with arrays).

Notice that the loop in lines 4–7 of the function free in has 2N paths, because

the conditional on line 5 could be true or false for 0 ≤ i < N . So, even for small

N , concolic execution becomes infeasible. For example, our implementation of

concolic execution in the tool Splat [XMG08] already takes one day on an Intel

85

Core 2 Duo 2.33 Ghz machine when N = 20.

Now we show how FlowTest can reduce the cost of testing this function. Our

intuition is that the behavior of one “page” in the system is independent of all

other pages, so we should test the code one page at a time. Concretely, in the

code, there is no control or data dependency between two separate indices of the

arrays. For example, the value A[0] is not control or data dependent on A[1],

and count[0] is not control or data dependent on count[1]. However, there is

dependence between A[i] and count[i] (through the conditional in lines 5–6).

Initially, we start with the optimistic partition

{ {A[0]}, {A[1]}, {count[0]}, {count[1]}}

in which each variable is in its own partition. Consider the run of Generate when

A[0] is treated symbolically, but all other variables are fixed to constant values.

The concolic execution generates two executions: one in which A[0] is 0 and a

second in which A[0] is not zero. For the run in which A[0] is not zero, moreover,

the flow map is updated with the entry:

flow(count[0]) = {{A[0]}, {count[0]}}

since the assignment to count[0] is control dependent on the predicate A[0] 6= 0.

Thus, the blocks {A[0]} and {count[0]} are merged. In a similar way, the blocks

{A[1]} and {count[1]} are merged.

In the next iteration of the main loop of FlowTest, the function Generate

generates tests individually for the blocks {A[0], count[0]} and {A[1], count[1]}.

This time, there is no additional merging of input blocks. Hence, the algorithm

terminates. The assertion holds on all paths of the resulting test set. The relative

86

soundness result implies that the assertions hold for every execution of free.

5.4 Evaluation

5.4.1 Implementation

We have implemented a subset of the FlowTest algorithm to generate inputs for

C programs on top of the Splat concolic execution tool [XMG08]. In our tool,

we take as input a program and a manual partition of the inputs, and implement

the test generation and dependence checking part of the algorithm (lines 8–11

in Algorithm 3). However, instead of merging input blocks and iterating, our

tool stops if two different input blocks must be merged (and assumes that the

merging is performed manually). Our experiments (described below) confirm the

following hypotheses:

• The performance impact of the added checks for dependencies is small, and

more than compensated by the reduction in the number of paths explored.

• A tester can find non-interfering input partitions by superficially examining

the source code.

Our implementation is divided in four main components: control flow generation,

tracking flow, symbolic execution, and test generation. We use CIL [NMR02] to

instrument C code and to statically build the post-dominators (assuming every

loop terminates) using the standard backwards dataflow algorithm [Muc97]. We

use the concolic execution and test generation loop of Splat to additionally track

information flow between input partitions. Our implementation handle function

calls and dynamic memory allocation in the standard way [GKS05, SMA05]. In

our experiments, we did not put a priori bounds on the lengths of executions,

87

but ran each function to completion.

Functions. Statement labels are made to be unique across all functions, there-

fore, entering and exiting a function during an execution is similar to in-lining

the function at each call site.

Pointers and Memory. Given a branch label ℓ, we track all writes from that

branch label to the label that post-dominates ℓ. Because our algorithm executes

the code, address resolution is done during runtime. This implies we do not

require a static alias analysis or suffer from the imprecision associated with static

alias analysis, especially in the presence of address arithmetic or complex data

structures.

We merge all dynamically allocated memory by allocation site when comput-

ing data dependencies, but distinguish each memory location individually when

performing concolic execution. This can merge different potentially independent

locations into the same block, but does not introduce imprecision in concolic ex-

ecution. For statically- and stack-allocated variables, each byte is distinguished

individually. For multiple writes to the same address from the branch label ℓ to

the immediate post-dominator of ℓ, we take the union of all blocks that flow into

that address. This limits the memory tracked to be (stack size × static alloca-

tion points) per branch node and is conservative because writes to one allocation

point flow into all dynamic memory allocated from that point. Experientially, we

found that this trade off did not lead to false alarms and was sufficient to check

that blocks did not interfere with each other – mostly because each field in a data

structure is distinguished.

Performance. Experimentally, we found that the extra information stored and

checked along each path results in doubling the time taken to generate and explore

a path. However, this increase in the per path time was more than compensated

88

by the reduction in the number of paths explored. The static analysis cost (to

compute post-dominators) is negligible (< 1 second for each of our case studies).

While we did not experiment with automatic merging of input blocks, we expect

there would not be a significant performance hit because finer grain blocks would

have few paths and merging would occur quickly.

5.4.2 Case Studies

We have compared our algorithm with Splat on the following case studies. pmap

is the code managing creation and freeing of a new processes in a virtual mem-

ory system for an educational OS kernel (1.6 KLOC), mondrian is the insertion

module in a memory protection scheme (2.6 KLOC), snort is a module in an

intrusion detection system (1.7 KLOC), and tcpdump consists of eight printers in

a packet sniffer (12 KLOC).

In all programs selected, it was possible to come up with a good partition of

the input with only a cursory examination of the source code (even though we did

not write the code ourselves). In pmap, each header representing a physical page

is a separate block. In mondrian, the protection bits could be partitioned from

all other inputs. In both of the packet processing programs snort and tcpdump,

various parts of the packet header could be partitioned. For tcpdump, we looked

at 10 different packet types that could be printed by tcpdump. The partition for

all those packet types were destination address, source address and everything

else.

The implementation automatically generated inputs to check if there was

interference between the manually chosen partitions for each program. Table 5.1

shows the results. All experiments were performed on a 2.33 GHz Intel Core 2

Duo with 2 GB of RAM. The two columns compare partitioning with concolic

89

FlowTest Splat

Program Input Blocks Cov Paths Time Paths Time

pmap 1024 512 42% 1536 8m29s 6238 >1hr
mondrian 12 2 30% 733 23m20s 2916 36m35s
snort 128 2 85% 45 4m44s 73 4m55s
tcpdump 128 3 18% 1247 34m1s 4974 53m46s

Table 5.1: Experimental Results: Comparing FlowTest and Splat . Input is
the size of the symbolic input buffer in bytes. Blocks is the number of blocks into
which the input was (manually) partitioned. Cov is branch coverage for both
FlowTest and Splat . Paths is the number of unique paths explored. Time is
the time taken up to a maximum of one hour.

execution. The Input Size is the size of the symbolic input buffer used for both

implementations. Blocks is the number of input blocks found manually and

used for FlowTest. Paths is the number of unique paths found. Coverage is

the number of branches covered. For all experiments, we could not achieve 100%

coverage because we were only testing a specific part of the program. While

these partitions may not be the best partition, FlowTest finished in half the time

of Splat in two cases. For pmap, FlowTest finished in less than 10 minutes. In

contrast, Splat did not finish in one day (Table 5.1 shows the progress made

by Splat after one hour (6238 paths).

We did not compare our algorithm with combinations of other optimizations

such as function summaries [God07, AGT08] or RWSets [BCE08], as these tech-

niques are orthogonal and can be combined to give better performance.

Limitations. In several examples, we found artificial dependencies between

inputs caused by error handling code. For example, the snort module first

checks if a packet is an UDP packet, and returns if not:

if(!PacketIsUDP(p)) return;

90

This introduces control dependencies between every field checked in PacketIsUDP

and the rest of the code. However, these fields can be separated into their own

blocks if the PacketIsUDP(p) predicate holds. A second limitation is our re-

quiring that inputs are partitioned. In many programs, there is a small set of

inputs that have dependencies with all other inputs, but the rest of the inputs

are independent. Thus, it makes sense to divide the inputs into subsets whose

intersections may not be empty.

91

CHAPTER 6

Non-Termination

Although there has been much work in proving programs always terminate [CS02,

BMS05, Cou05, CPR06], there has been little work that find non-terminating

executions. One way of finding non-terminating program executions is to find

feasible lassos. A lasso is a finite program path called stem followed by a finite

program path called a loop. A lasso is feasible if an execution of the stem can

be followed by infinitely many executions of the loop. In general, the method

is incomplete, as not all non-terminating program executions are lassos because

the infinite behavior may be non-periodic. However, lassos describe the most

common non-termination bugs.

The algorithm proceeds in two phases. The first phase generates candidate

lassos, and the second checks each lasso for possible non-termination. Candidate

lassos can be generated exhaustively by systematically executing all paths of the

concrete program until a control location repeats. Backtracking is controlled by

collecting symbolic constraints during concrete program execution. This method

has two advantages. First, the stem followed by one execution of the loop is

guaranteed to be feasible. Second, every such lasso is guaranteed to be generated.

Alternatively, a termination prover could be used to supply a candidate lasso

whenever the proof fails. The second phase proves the feasibility of a given lasso.

A lasso is feasible if and only if there exists a recurrent set of states, a set of states

that is visited infinitely often along the infinite path that results from unrolling

92

the lasso. The existence of a recurrent state is formulated as a template-based

constraint satisfaction problem. The constraint satisfaction problem for recurrent

sets turns out to be equivalent to constraint systems for invariant generation

[CSS03, SSM04], therefore, techniques for constraint-based invariant generation

apply directly to the problem of checking non-termination. The precision of the

analysis can be adjusted by choosing an appropriate constraint theory. We can

either apply a more precise bit-level analysis that takes into account many of the

machine-dependent characteristics of programs such as overflow, or a less precise

integer-level (arithmetic) analysis that is geared towards more algorithmic reasons

for non-termination.

6.1 Example

Non-Terminating Binary Search. Joshua Bloch recently pointed out that

many implementations of binary search, for example, the version that used to be

in Java’s standard library, can produce ArrayOutOfBounds exceptions because it

ignores arithmetic overflows [Blo06]. Specifically, the statement:

mid = (lo + hi)/2

that computes the midpoint of the range can overflow for large values of lo and

hi, producing a negative value that is used as an array index.

The version of binary search shown in Figure 6.1 is similar to the original,

except that we have replaced the signed integers of the original version with

unsigned integers. (This is similar to the signature of binary search in C’s stdlib

which uses the unsigned type size t for the indices.) This time, while the array

93

index will remain within bounds, the arithmetic overflow can lead to an infinite

loop.

We illustrate the non-termination by considering an execution of a path

through the while loop that follows the first branch of the conditional state-

ment:

[lo ≤ hi]; mid := (lo + hi)/2; [a[mid] < k]; lo := mid + 1.

We maliciously choose the following initial values:

lo = 1, hi = MAXINT , a[0] < k,

where MAXINT is the maximum value of an unsigned integer. The first state-

ment of the path is the evaluation of the loop condition lo ≤ hi, which returns

true for the chosen inputs. Then, we update the value for the variable mid. Then

mid = 0 (by arithmetic overflow), and we come back to the head of the loop with

lo = 1 and hi = MAXINT , never terminating. Thus, if an adversary can choose

the input values to the program, she can force the program to enter an infinite

loop.

One sufficient condition to check for such non-terminating loops is to find a

lasso-shaped execution: a feasible program execution that reaches the head of the

loop (the conditional lo < hi on line 3) with some state s, then executes the

body of the loop (lines 4-11) and goes back to the same state s (modulo the live

variables). In this case, we can unwind the execution of the loop arbitrarily many

times, starting at s, executing the loop and returning to s.

We can search for such paths by exploring the program symbolically. In sym-

bolic execution, the program is executed on symbolic instead of, or in addition to,

concrete inputs, and symbolic constraints are gathered along the execution. Any

94

1: int bsearch(int a[], int k,

unsigned int lo,

unsigned int hi) {

2: unsigned int mid;

3: while (lo < hi) {

4: mid = (lo + hi)/2;

5: if (a[mid] < k) {

6: lo = mid + 1;

7: } else if (a[mid] > k) {

8: hi = mid - 1;

9: } else {

10: return mid;

11: }

12: }

13: return -1;

14: }

Figure 6.1: [Example] Broken binary search

satisfying assignment to the symbolic constraints is guaranteed to execute the

program along the current path. Let X be the set of program variables (ignoring

the heap for the moment). Then, for a program path p, we write ρp(X,X
′) to

denote the symbolic constraint generated by symbolic execution when traversing

p. It constrains the value X ′ of the program variables at the end of the path in

terms of their original values X.

We assume that symbolic execution completes a loop in the control flow graph

of the program, say along the path ℓ0
stem
−−→ ℓ

loop
−−→ ℓ where ℓ0 is the entry point

of the program, ℓ is the head of a loop, and stem and loop are respectively the

executed path up to the loop and along the loop body. To detect an infinite loop,

we can ask for a satisfying assignment to the query:

ρstem(X0, X) ∧ ρloop(X,X
′) ∧X = X ′ (6.1)

95

While we write X = X ′ to enforce the search for the same state, we only require

equality of all live variables (i.e., variables whose values will be read in the fu-

ture). For the program bsearch, and the path that takes the first branch of the

conditional on line 5, the generated query is:

true∧ constraints up to line 3

lo < hi ∧ mid = (lo + hi)/2∧

a[mid] < k ∧ lo′ = mid + 1 constraints for the loop

∧lo′ = lo ∧ hi′ = hi set live variables equal

This query can be resolved by a decision procedure that treats variables and arith-

metic in a bit-accurate way [CKS05, GD07b, XA05], and a satisfying assignment

to the variables will provide an input that causes non-termination.

Unbounded Ranges and Recurrent Sets. Unfortunately, modeling the bit-

accurate semantics leads to too many cases of non-termination, as a significant

portion of C code is written without considering overflow, or with implicit as-

sumptions about the size of integer inputs to the program. For example, under

the bit-accurate semantics, the following loop does not terminate:

n := input();

for (unsigned i = 0; i <= n; i++) body;

An offending input is when n is MAXINT , the maximum representable number

in the machine. When i is incremented after it reaches n, the value rolls back

to 0, and the loop check i ≤ n continues to hold. Such loops occur in library

functions that sort inputs. However, there is always an implicit assumption that

the arrays we shall sort in practice are not that large (or the memory allocator

will fail to allocate the array even before the sorting routine is called).

96

While these non-terminating programs represent an important class of bugs,

especially for security and denial-of-service related vulnerabilities where an at-

tacker can exploit the overflow, we also want to find non-terminating executions

in the still important abstracted semantics, where numbers are modeled as un-

bounded, mathematical integers. These non-terminating executions can point

out algorithmic problems in code.

In the abstracted semantics, the condition in Equation (6.1) is sufficient for

non-termination, but clearly not necessary. The same state may not be reached in

any iteration of the loop, but the execution can nevertheless be non-terminating.

For example, consider the loop:

function loop() {

i = input(); y = input();

if (y!=0)

while (i >= 0) { i = i - y; }

}

The loop is non-terminating if the initial value of i is non-negative, and y is

negative. In this case, every execution of the loop body produces a new state

where the new value of i is the old value of i minus the value of y. Thus, for no

unrolling of the loop body can we satisfy the requirement from Equation (6.1).

Instead, to show this loop is non-terminating, we check for a recurrent set.

A recurrent set R is a set of states at the head of the loop that satisfies the

following properties:

(1) R satisfies the loop predicate p,

(2) some reachable state s satisfies R, and

97

(3) for any state s satisfying R, the successor of s after executing the

loop body is again in R.

Clearly, if there is such an R, then we can find a non-terminating execution of the

program. In case of the loop in loop, the set i ≥ 0∧ y ≤ 0 forms a recurrent set.

The first two conditions are easily checked, and for condition (3), we notice that

i ≥ 0 ∧ y ≤ 0 ∧ i′ = i− y ∧ y′ = y ⇒ i′ ≥ 0 ∧ y′ ≤ 0. Thus, we can conclude that

there is a non-terminating execution of the loop. We have reduced the search for

non-terminating executions to the search for recurrent sets.

Reduction to Constraint Solving. We shall use a template-based approach

to searching for recurrent sets, reducing the search for recurrent sets to constraint

solving over a suitable domain. We restrict attention to the important class of

linear programs, where the transition relation is a linear function of the variables

(and their updated values). Consider the lasso-shaped execution:

i := input(); y := input(); [y 6= 0]; [i ≥ 0]; i := i− y;

Let us assume that the recurrent set is defined by a parametric linear inequality

together with the loop guard. That is, we assume the template

i ≥ 0 ∧ ai + by ≥ c,

where a, b, and c are unknown parameters. They define a recurrent set if an

execution through the loop starting from a state satisfying this constraint returns

98

to this set:

i ≥ 0 ∧ ai + by ≥ c⇒

i ≥ 0 ∧ i′ = i− y ∧ y′ = y ∧ i′ ≥ 0 ∧ ai′ + by′ ≥ c.

These constraints are similar to constraints generated in template-based invariant

generation [CSS03], and similar non-linear constraint solving techniques can be

used to solve them, we provide the formal details in Section 6.4. After solving

these constraints for a, b, and c, we get a recurrent set

i ≥ 0 ∧ y ≤ 0.

This set is reachable for the initial condition i ≥ 0∧y < 0. Any solution to these

constraints demonstrates an input that causes non-termination.

Summary. Our non-termination checker has two components: one component

performs a reachability computation on the state space of the program to enu-

merate all possible lasso shaped executions, and the second component attempts

to infer a recurrent set for each lasso-shaped execution. In our implementation,

the enumeration of lassos is performed using directed test generation. Existence

of a recurrent set implies that the current lasso induces a non-terminating execu-

tion. If no recurrent set is found (either because the loop terminates or because

the template is too weak), the generation of lassos continues.

99

6.2 Definitions

We develop our algorithm for an abstract imperative programming language. For

ease of exposition, this language ignore features such as memory and references,

or function calls.

A program P = (X,L,L	, ℓ0, T) consists of a set X of variables, a set L of

control locations, a set of cutpoint locations L	 ⊆ L, an initial location ℓ0 ∈ L,

and a set T of transitions. Each transition τ ∈ T is a tuple (ℓ, ρ, ℓ′), where

ℓ, ℓ′ ∈ L are control locations, and ρ is a transition relation over free variables

from X ∪X ′. The variables from X denote values at control location ℓ, and the

variables from X ′ denote the (updated) values of the variables from X at control

location ℓ′. The sets of locations and transitions naturally define a directed graph,

called the control-flow graph (CFG) of the program [ASU86]. Note though that

unlike [ASU86] we put the transition constraints at the edges of the graph. We

assume that for any infinite path through the control-flow graph, there exists at

least one control location in L	 that is visited by the path infinitely many times.

In our examples, we shall write programs using a C-like syntax, but these can be

easily processed into (abstract) programs.

A state of the program P is a valuation of the variables from X. The set of all

states is denoted V.X. We shall represent sets of states using formulas over X.

We write s |= ψ if the state s ∈ V.X satisfies the formula ψ. A formula ψ over X

represents the set {s ∈ V.X | s |= ψ}. For a formula ρ over X∪X ′ and a valuation

(s, s′) ∈ V.X×V.X ′, we write (s, s′) |= ρ if the valuation satisfies the constraint ρ.

An execution of the program P is a sequence 〈ℓ0, s0〉, 〈ℓ1, s1〉, . . . , 〈ℓk, sk〉 ∈ (L ×

V.X)∗, where ℓ0 is the initial location and for each i ∈ {0, . . . , k − 1}, there is a

transition (ℓi, ρ, ℓi+1) ∈ T such that (si, si+1) |= ρ. A path of the program P is

a sequence π = (ℓ0, ρ0, ℓ1), (ℓ1, ρ1, ℓ2), . . . , (ℓk−1, ρk−1, ℓk) of transitions, where ℓ0

100

is the initial location and the sequence of transitions form a path in the CFG.

The path π is feasible if there is an execution 〈ℓ0, s0〉, . . . , 〈ℓk, sk〉 such that for

each i ∈ {0, . . . , k − 1}, we have (si, si+1) |= ρi. A location ℓ is reachable if some

feasible path ends in ℓ. A state s is reachable at location ℓ if 〈ℓ, s〉 appears in some

computation. Feasibility is extended in a natural way to paths that are infinite.

That is, an infinite path π = (ℓ0, ρ0, ℓ1), . . . , (ℓk−1, ρk−1, ℓk), . . . is feasible if there

is an infinite execution sequence 〈ℓ0, s0〉, . . . , 〈ℓk, sk〉 . . . for all i ∈ N, we have

(si, si+1) |= ρi. For a finite path (ℓ0, ρ0, ℓ1) . . . (ℓk−1, ρk−1, ℓk), we shall write a

“compound transition” (ℓ0, ρ, ℓk) where ρ = ρ0 ◦ . . . ◦ ρk−1, and ◦ is the relational

composition operator defined by

(φ ◦ ψ)(X,X ′) = ∃X ′′. φ(X,X ′′) ∧ ψ(X ′′, X ′).

A lasso at a cutpoint location ℓ ∈ L	 consists of two sequences of transitions,

which are referred to as stem and loop:

lasso = ℓ0
stem
−−→ ℓ

loop
−−→ ℓ

The stem is a path from the initial location ℓ0 to the location ℓ. The loop consists

of a path that starts and ends at the cutpoint location ℓ by following a cyclic

path through the control-flow graph. A lasso induces an infinite execution if the

infinite path stem(loop)ω obtained by traversing the stem and then unwinding

the loop infinitely many times is feasible.

101

6.3 Generating Lassos

Our algorithm for detecting non-terminating executions has two parts: one part

generates lassos in the control-flow graph, and the second part checks if each

generated lasso induces an infinite execution.

We now describe the algorithm NonTerm (shown in Figure 6.2) that searches

for lassos in the control-flow graph of the program.

Non-Deterministic Search. In Algorithm NonTerm, we use the variables

ℓ, s, and τ to store the current location, program state, and transition that leads

to the current location. The search for lassos is divided into two phases, which

follows the lasso structure. The variable ℓ′ is used to fix the cutpoint for the loop.

During the first phase, we construct the stem part, see lines 6–9 in Figure 6.2. It

is chosen nondeterministically and also fixes the cutpoint location ℓ′. The second

phase, see lines 11–14, nondeterministically chooses a loop at ℓ′.

Our high-level exposition combines nondeterministic choice and backtracking

to achieve exhaustive enumeration of all possible lassos. We use a nondeterminis-

tic choice operator Choose, which selects an arbitrary element from a given set.

We assume that Choose raises the ChoiceFailure exception when applied on

the empty set. The function ChooseNext determines how a stem/loop is ex-

tended. When applied on a program state s at location ℓ, it returns a program

transition that starts from ℓ, a successor location and state under this transi-

tion. The definition of ChooseNext is shown in Figure 6.3. The Choose and

ChooseNext operations can be effectively implemented using symbolic execu-

tion and depth first search.

We assume that if no more backtracking is possible, i.e., if all possible choices

have been explored by the algorithm, then the exception BacktrackingEx-

102

hausted is raised. In this case, we report that the program is terminating, see

line 22.

Check. A discovered lasso is analyzed w.r.t. the non-termination. We use sym-

bolic constraint-based methods for this analysis, which is motivated by the fol-

lowing considerations. Symbolic methods can effectively explore all possible ex-

ecutions that follow the stem and then unwind the loop part, despite their large

or unbounded number. Even if a particular execution analyzed by the algorithm

is terminating, there may be a similar one—an execution that traverses the same

stem and loop, but has a different valuation of the program variables—that is

non-terminating.

We apply a non-termination checker by calling the function NonTermLasso,

see line 15. If the proof of non-termination succeeds, then we assume that it

yields an initial state of a non-terminating execution. These state is reported as

evidence of non-termination, and the algorithm NonTerm succeeds. In general,

the transition relation of the lasso may be nondeterministic, e.g., contain some

input statements. In this case, we also require that NonTermLasso computes

a sequence of valuations for the inputs that are read by the program during the

lasso traversal. In Section 6.4, we describe algorithms for proving non-termination

that provide a range of precision/efficiency trade-offs.

A failed non-termination check guides the algorithm into the search for a

different lasso. We rely on backtracking to explore the alternative choices of the

calls to Choose and ChooseNext.

Correctness. The correctness of the algorithm NonTerm relies on two com-

ponents: the exhaustiveness of the search process for lassos, and the soundness of

NonTermLasso, i.e., it only gives the positive result if there exists an infinite

103

execution induced by the lasso.

Theorem 2 (Correctness). If algorithm NonTerm on input program P ter-

minates and returns “non-terminating execution starts from s” then P has an

infinite execution starting from state s. If algorithm NonTerm on input pro-

gram P terminates and returns “program terminates” then the execution of P

terminates starting from any initial state s.

Sketch. The first case immediately follows from the correctness of Non-

TermLasso. For the second case, we observe that if the BacktrackingEx-

hausted exception is raised then NonTerm enumerated all possible lassos.

From the correctness of NonTermLasso, we conclude program termination.

6.4 Proving Feasibility of Lassos

In this section, we propose algorithms for proving non-termination of lassos,

which we use to implement the function NonTermLasso in our algorithm Non-

Term for testing non-termination.

(Non-)Well-Foundedness. First, we describe conditions when a relation can

induce infinite sequences. Subsequently, we extend it to deal with lassos.

A binary relation ρ(X,X ′) over states is not well-founded at a state s if there

exists an infinite sequence s1, s2, . . . such that s1 = s and for each i ≥ 1 we

have (si, si+1) |= ρ. The relation is well-founded at s if there is no such infinite

sequence. We are interested in finding the initial states of infinite sequences

induced by relations that are not well-founded.

Let lasso = ℓ0
stem
−−→ ℓ

loop
−−→ ℓ be a lasso where ρstem and ρloop are transition

relations of the stem and loop, respectively. The lasso induces an infinite exe-

104

cution if the transition relation of the loop part is not well-founded at a state

that is reachable by traversing the stem. Formally, the lasso induces an infinite

execution if the relation

∃X. ρstem(X,X ′) ∧ ρloop(X
′, X ′′)

is not well-founded.

6.4.1 Recurrent Sets

We now provide a condition for checking that a relation is not well-founded. We

formulate our condition in terms of recurrent sets. Let ρ be a relation. A state s′

is called a ρ-successor of a state s if (s, s′) |= ρ. A set of states G(X) is recurrent

for ρ if for each state s |= G(X), there exists a ρ-successor state s′ such that

s′ |= G(X).

Proposition 1 (Recurrent sets and non-well-foundedness). A relation ρ(X,X ′)

is not well-founded if and only if there exists a non-empty recurrent set of states,

i.e., if for some G(X), we have:

∃X. G(X), (6.2)

∀X ∃X ′. G(X) → ρ(X,X ′) ∧ G(X ′). (6.3)

Proof. If a non-empty recurrent set exists, then we generate an infinite sequence

by picking an element satisfying G(X) (this is possible by Condition (6.2)), and

then constructing an infinite sequence by iteratively applying Condition (6.3). If

a relation is not well-founded, let s1, s2, . . . be an infinite sequence induced by

the relation. We define G(X) to be the set {s1, s2, . . .}.

105

We illustrate recurrent sets by example. Consider the relation ρ over the

variables x, y and x′, y′ such that

x ≥ 0 ∧ x′ = x+ y ∧ y′ = y + 1.

We observe that for the construction of an infinite sequence induced by ρ it is

necessary that the value of variable x is always positive. One possibility to ensure

this condition is to start with a positive value of x and increase it at each step.

Hence, we obtain a recurrent set

G1(x, y) = x ≥ 0 ∧ y ≥ 0.

An alternative recurrent set admits infinite sequences in which the value of x may

decrease initially, but never decreases below zero:

G2(x, y) = x ≥ 0 ∧ x ≥
1

2
|y|(|y|+ 1).

An example infinite sequence for the recurrent set G2(x, y) is

〈6,−3〉, 〈3,−2〉, 〈1,−1〉, 〈0, 0〉, 〈0, 1〉, 〈1, 2〉, 〈3, 3〉,

When analyzing the non-termination of a lasso, we need to construct a re-

current set for the loop of the lasso that is moreover reachable by traversing the

stem.

Proposition 2 (Recurrent set for lasso). A lasso ℓ0
stem
−−→ ℓ

loop
−−→ ℓ induces an

infinite execution if there exists a recurrent set G(X ′) for the relation ρloop(X
′, X ′′)

such that

∃X ∃X ′. ρstem(X,X ′) ∧ G(X ′). (6.4)

106

6.4.2 From Recurrent Sets to Constraint Systems

We now describe two symbolic analyses to construct recurrent sets satisfying

the conditions of Proposition 2 for a given lasso. The first, bitwise, analysis

assumes that the state space is finite, and without loss of generality, encoded

using Boolean variables. The second, linear arithmetic analysis assumes that

every program transition along the lasso can be represented as a (rational) linear

constraint over the program variables.

The bitwise analysis enables the precise treatment of low-level features of

programming languages, e.g., bit-wise operations and arithmetic modulo fixed

widths. The linear arithmetic analysis is an useful abstraction for programs when

bit-level precision is not required. In either case, we show how we can reduce the

search for recurrent sets to automatic constraint solving.

Bitwise Analysis. For the bitwise analysis, we assume that program variables

range over Booleans, and that the transition relation of the lasso is given by a

Boolean formula over propositional variables. Since the state space is finite, a

lasso induces an infinite execution iff some state is repeated infinitely many times

in the course of the execution. Therefore, we can restrict the search to singleton

recurrent sets (i.e., recurrent sets which have exactly one state). Given a lasso

ℓ0
stem
−−→ ℓ

loop
−−→ ℓ, we therefore look for a state s that reaches ℓ by executing the

transition stem, and after executing the transition loop, comes back to itself. We

encode this condition in the constraint

∃X ∃X ′. ρstem(X,X ′) ∧ ρloop(X
′, X ′), (6.5)

107

The function NonTermLasso returns a positive result if this constraint is sat-

isfiable, and can be implemented using Boolean satisfiability solving. The valua-

tion of X is an initial state that witnesses non-termination. This is the same as

bounded model checking for liveness [CBR01]. The constraints can be resolved

by a bit-precise decision procedure such as Cogent [CKS05] or STP [GD07b], that

eventually reduces the checks to Boolean satisfiability.

Notice that the constraint in Equation (6.5) may not be satisfied for a syn-

tactic loop in the program, but only for some unrolling of this loop. Consider the

program

while (x == y) { x = not x; y = not y; }

which has an infinite loop if x and y are initially equal, but for which the constraint

(x = y) ∧ (x = ¬x ∧ y = ¬y)

obtained from Equation (6.5) is unsatisfiable. However, since we exhaustively

generate all lassos, we shall eventually consider a lasso where the loop is unrolled

once:

[x==y]; x’ = not x; y’ = not y;

[x’==y’]; x’’ = not x’; y’’ = not y’;

for which a singleton recurrent set exists.

Linear Arithmetic Analysis. The linear arithmetic analysis assumes that

the program transitions are representable using conjunctions of linear inequalities

over the program variables.

108

Our algorithm follows a constraint-based approach for the synthesis of auxil-

iary assertions for temporal verification, e.g., linear and non-linear invariants and

ranking functions [CSS03, SSM04, Cou05, Kap06]. We extend its applicability

to synthesizing recurrent sets.

The constraint-based approach to the generation of auxiliary assertions re-

duces the computation of an assertion to a constraint solving problem. The

reduction is performed in three steps. First, a template that represents an asser-

tion to be computed is fixed in an a priori chosen language. The parameters in

the template are the unknown coefficients that determine the assertion. Second,

a set of constraints over these parameters is defined. The constraints encode the

validity of the assertion. This means that every solution to the constraint system

yields a valid assertion. Third, an assertion is obtained by solving the resulting

constraint system.

Our approach to generate recurrent sets follows the same three steps. We

use templates over linear inequalities to represents recurrent sets. We derive con-

straints over template parameters that encode the conditions in Equations (6.2)–

(6.4) from Section 6.4.1. Then, we solve the constraints and obtain a recurrent

set.

Recurrent sets are defined by universally quantified conditions. As for invari-

ant generation in linear arithmetic, our main technical tool for the elimination of

universal quantification will be Farkas’ lemma from linear programming.

Theorem 3 (Farkas’ Lemma [Sch86]). A satisfiable system of linear inequalities

Ax ≤ b implies an inequality cx ≤ δ if and only if there exists a non-negative

vector λ such that λA = c and λb ≤ δ.

We now give the details of our algorithm for the computation of recurrent sets.

We assume that the transition relations of the stem and loop parts are given by

109

systems of inequalities. In particular, we assume that the transition relation of

the loop is given by a guarded command with the guard Gx ≤ q and updates

x′ = Ux+ u.1 Our algorithm computes a recurrent set G that is an instantiation

of a template consisting of a conjunction of linear inequalities:

G = Tx ≤ t.

First, we present a translation of Condition (6.3) into constraints over tem-

plate parameters. We eliminate the existential quantification in Condition (6.3)

by substituting the definition of the primed variables given by the loop update:

∀x. G(x) → ρloop(x, Ux+ u) ∧ G(Ux + u),

which we write in matrix form:

∀x. Tx ≤ t→ Gx ≤ g ∧ TUx ≤ t− Tu.

Here, the template parameters T and t are existentially quantified. Next, we

eliminate the universal quantification by encoding the validity of implication using

Farkas’ lemma:

∃Λ ≥ 0. ΛT =




G

TU



 ∧ Λt ≤




g

t− Tu



 . (6.6)

1We use low case x instead of X to denote program variables in this section to avoid confusion
between matrices and vectors.

110

We can translate Condition ((6.2)) into the constraint:

∀µ ≥ 0. µT = 0 → µt ≥ 0.

The translation for (6.4) is similar. Together with (6.6), this leads to the fi-

nal constraint defining recurrent sets that contains quantifier alternation, from

existential to universal, as well as non-linear constraints arising from the multi-

plication between template parameters and variables that encode the implication

validity. The constraints are similar to those for invariant generation [CSS03],

and we can use existing techniques based on instantiations and case splitting.

Unfortunately, there is no practical constraint solver that supports quantifier al-

ternation. We propose an alternative solution, which we can be implemented

using a constraint solver that can iteratively enumerate all solutions. We enforce

Conditions (6.2) and (6.4) by evaluating them for the values of T and t that the

constraint solver computes for constraint (6.6). If the conditions are not satisfi-

able, then we require the solver to find alternative values for T and t. A constraint

logic programming-based solver, e.g., clp(Q,R) [Hol95], can implement this back-

tracking search. We summarize the described algorithm NonTermLasso in

Figure 6.4.

Theorem 4. If Algorithm NonTermLasso on an input lasso with stem

S(xx′) ≤ s, loop Gx ≤ g ∧ x′ = Ux + u, and template Tx ≤ t terminates

and returns “recurrent set” T ∗x ≤ t∗ then T ∗x ≤ t∗ is a recurrent set for the

lasso.

We illustrate the constraint generation process on the loop:

x ≥ 0 ∧ x′ = x+ y ∧ y′ = y + 1,

111

which we write in matrix form as

(

−1 0
)

︸ ︷︷ ︸

G




x

y



 ≤ 0
︸︷︷︸

g

∧




x′

y′



 =




1 1

0 1





︸ ︷︷ ︸

U




x

y



 +




0

1





︸ ︷︷ ︸

u

.

First, we assume a template:

txx+ tyy ≤ t ∧ sxx+ syy ≤ s,

where tx, ty, t, sx, sy, and s are unknown parameters. Then, we have:

TU =




tx tx + ty

sx sx + sy



 and t− Tu =




t− ty

s− sy



 .

Following (6.6), for:

Λ =








λ11 λ12

λ21 λ22

λ31 λ32








we obtain the constraint system:

∃Λ ≥ 0. Λ




tx ty

sx sy



 =








−1 0

tx tx + ty

sx sx + sy








∧ Λ




t

s



 ≤








0

t − ty

s − sy








.

We compute a solution:

tx ty t sx sy s

-1 0 0 0 -1 0
,

112

which defines the recurrent set x ≥ 0∧ y ≥ 0. It is straightforward to check that

the validity of the corresponding implication in Condition (6.3) is established by

Λ such that:

Λ =








1 0

1 1

0 1








,

for which the constraint below evaluates to true:

Λ




−1 0

0 −1



 =








−1 0

−1 −1

0 −1








∧ Λ




0

0



 ≤








0

0

1








.

Our algorithm requires that a template for recurrent sets is provided. We pro-

pose an iterative strengthening heuristic to find a template for which a recurrent

set exists. We start with a template that is a singleton conjunction, and incre-

mentally add more conjuncts if the constraint solving fails.

6.4.3 Weaker Conditions for Recurrent Sets

A lasso induces an infinite execution iff some unrolling of its loop part is not well-

founded at a state reachable by executing the stem. These unrollings determine

weaker conditions on recurrent sets, which can sometimes lead to more succinct

representations for recurrent sets.

We first illustrate the weakening by example, and then provide a formal ac-

113

count. Consider a lasso

ρstem = y′ = 0,

ρloop = x ≥ 0 ∧ x′ = x+ y ∧ y′ = 1 − y.

The lasso induces infinite executions, and a recurrent set is:

G1(x, y) = x ≥ 0 ∧ (y = 0 ∨ y = 1).

We observe that the recurrent set has disjunctions, which are difficult for con-

straint solvers to reason about. However, we may also consider a loop relation

ρloop2 obtained from the given one by unwinding it one time:

ρloop2(X,X ′) = ρloop ◦ ρloop(X,X
′)

= x ≥ 0 ∧ x+ y ≥ 0 ∧ x′ = x ∧ y′ = y.

For this relation we compute a recurrent set

G2(x, y) = x ≥ 0 ∧ y = 0.

This set is represented using a conjunction of atomic predicates. Any infinite

sequence induced by the lasso stem.loop2 is also induced by the original lasso.

We now define the i-th weakening for recurrent sets. Given a binary relation

ρ, we say that G is i-th recurrent for ρ, for i ≥ 1, if it is recurrent for the relation

ρi, which is obtained from ρ by unwinding it i-many times, i.e.,

∀X ∃X ′. G(X) → ρi(X,X ′) ∧ G(X ′), (6.7)

114

where

ρi(X,X ′) =







ρ(X,X ′) if i = 1,

ρ(X,X ′) ◦ ρi−1(X,X ′) if i > 1.

The constraint-based non-termination check (Algorithm NonTermLasso) can

be implemented using i-th recurrent sets. We observe that we can account for

i-th weakening, where i > 1, by considering the (unrolled) loop relation:

ρi
loop(x, x

′) = GU i−1x ≤ g −
i−1∑

j=1

GU j−1u ∧

x′ = U ix+

i∑

j=1

U j−1u.

As a heuristic, when proving non-termination, we first try to compute a recurrent

set following the original definition, i.e., no weakening is applied. If the computa-

tion fails, then we continue with a weaker definition of recurrent sets until either

an i-th recurrent set is computed or an upper bound on the number of weakening

attempts is reached. The template strengthening heuristic from the previous sec-

tion can be combined with weakening of recurrent sets. We increase the number

of conjuncts in the template only after a sequence of weakening steps, up to an

a priori given bound, is explored. Such a combination attempts to avoid the

transition to more expensive constraint solving tasks by first trying to simplify

recurrent sets through their weakening.

115

6.5 Experiences

6.5.1 Implementation

We have implemented Tnt , a tool that implements the termination checking al-

gorithm for C programs. Tnt has an outer loop that performs concolic execution

by running the program on concrete as well as symbolic inputs. The constraints

generated during concolic execution are bit accurate, and solved using the deci-

sion procedure STP [GD07b]. In our symbolic execution, the heap is always kept

concrete, we only allow symbolic constants with base types. The template-based

search for recurrent sets is implemented using a Sicstus Prolog based constraint

solver for invariant generation.

In preliminary experiments, we checked for non-termination of simple and

small programs, including the programs from Section 6.1, and an abstraction of

the non-termination bug from [CPR06]. In each case, the non-terminating loop

was identified in a few seconds.

One limitation of the current implementation is that the heap is concrete.

While this means that the recurrent sets benefit from precise address information,

it is also a limitation of the tool to find potentially infinite executions that depend

on shape assumptions on data structures. For example, we cannot catch infinite

executions arising from acyclic list traversal routines when they are applied on

circular lists as input. Integrating our work with symbolic shape information is

left as future work.

6.5.2 Mondriaan Memory Protection

In addition to the simple examples, we ran our tool on an early implementation

of the Mondriaan memory protection system [WCA02, Wit04].

116

Mondriaan is a protection scheme that allows flexible memory sharing and

fine-grained permission control between different user applications and a trusted

supervisor mode running on an OS. Unlike usual virtual memory that operates

at the page level, Mondriaan allows arbitrary permissions control at the granu-

larity of individual memory words. In the Mondriaan implementation, memory

is organized as a linear address space, divided into user segments. Each user seg-

ment determines a range of addresses and permissions associated with addresses

in that range, and is defined as a triple 〈b, l, p〉 of a base address b, a length

l, and a permission p. By setting the permissions of a user segment, a process

can flexibly and safely share its address space with other processes. A privileged

supervisor mode provides an API to modify permissions. The permissions as-

sociated with a user segment can be modified using this API by specifying the

base word address, the length of the user segment in words, and the desired per-

mission (none, read-only, read-write, or execute-read). Each protection domain

(i.e., group of processes sharing the address space) maintains a permissions table,

stored in privileged memory, that specifies the permission associated with each

address of the address space.

The permissions table is organized as a compressed multi-level table, with

three levels: a root table, a mid-level table, and a leaf table. Figure 6.5 shows

how the table is indexed by a 32-bit address. The root table has 1024 entries

(indexed by the top 10 bits in Figure 6.5), each of which maps a 4MB block of

memory. Each mid-level table has 1024 entries (indexed by the next 10 bits),

each of which maps a 4KB block. The leaf tables have 64 entries each (indexed

by 6 bits), and each entry provides individual permissions for 16 four-byte words.

To save space, upper level table entries can either be pointers to lower level

tables (or NULL), or directly hold a permissions vector for sub-blocks. In this

117

case, the rightmost bit of the entry holds whether the entry is a pointer or a per-

missions vector (since addresses are word-aligned, the last two bits of an address

are always zero). Permission vectors stored in upper levels of the table only store

permissions for 8 sub-blocks (instead of 16 in the leaves). An auxiliary function

uentry is data is used to check whether an entry is a pointer to a lower level

table or a permissions vector.

We chose Mondriaan as our case study because (1) correctness is crucial,

since the code runs in privileged mode in the kernel, (2) the code was compli-

cated enough to warrant its author to annotate the code with properties (both

as assertions and as comments), and to suggest it as a challenge for formal ver-

ification, and (3) the code is low-level, performing extensive bitwise operators

that extract indices to arrays, and memory-intensive, traversing multiple levels

of data structures, and both these features provide exceptional challenges to static

analysis.

Initially, the Mondriaan implementation creates the root permission table

with 1024 entries all filled with 0s (that is, no permissions associated with any

address). Figure 6.9 shows source code to perform updates from an early version

of the Mondriaan memory protection system [WCA02, Wit04] that was provided

to us by the author Emmett Witchel as a challenging verification problem. The

code updates the permissions of a user segment in the permission table by taking

as input a user segment and updating the permissions of the segment in the table.

The actual update is performed by the recursive procedure mmpt insert,

shown in Figure 6.9, which takes as input a pointer to the permission table

structure mmpt, a user segment (a base address, a pointer len to the length of

the segment, and the desired protection prot), and additional control parameters

such as a pointer to the current table (initially, the root table), the current level

118

(root, mid-level, or leaf), and flags determining whether or not some table can

be freed and whether or not to allocate. An insertion into the table for a user

segment is performed as a call

mmpt insert(mmpt, base,&len, prot,

mmpt→tab, 0,&nonzero, 1);

The code is complicated, as it must consider several different cases in inserting

new permissions to the table, and performs dynamic allocation or freeing of lower

level tables when they are not necessary. Further, a user segment is broken

into parts in the insertion process, and the insertion routine is called recursively

for each part. Instead of explaining the code line by line, we will explain the

functional behavior of mmpt insert.

As shown in Figure 6.6, mmpt insert splits the memory range from base to

base+len in aligned 4MB blocks at the root level. For an update, this can result

in one of the following two cases:

Exact Coverage. For every 4MB sub-block of the user segment that is aligned

with the sub-block size (512KB), the permission vector is set in the cor-

responding entry in the root table. If the root entry was a pointer to a

mid-level table, then the mid-level table is recursively deallocated.

Overlapped Coverage. Breaking the user segment into aligned 4MB blocks

can leave “extra” blocks at the beginning and at the end, that is, the first

and last blocks of the user segment may not be aligned with 512KB sub-

blocks at the root level. For these blocks, mmpt insert recursively goes

to the mid-level table (allocating the mid-level table if necessary) and sets

permissions in the mid-level table.

119

Depending on the stored value in the root entry for the base address,

mmpt insert first does following action:

1. If the root entry is 0 then it allocates a new mid level permission table of

1024 entries and fills the entries in the new table with zeros. The root entry

is set as a pointer to this table.

2. If the root entry is a permission vector then it allocates a mid-level permis-

sion table and fills it with permission vectors. The root entry is set as a

pointer to this table.

3. If the root entry is a already a pointer to a mid-level table then it follows

the pointer to the mid-level table.

Then, mmpt insert computes the the memory range of the first or last section

and makes a recursive call with parameters this memory range, pointer to this

mid level table. With the same logic as for the root table, it divides the memory

range in 4KB blocks and does the same operations for the permissions. For the

possibly unaligned first and last block, it generates leaf tables. Permissions in leaf

tables are set by a recursive call to mmpt insert. If leaf tables have unaligned

blocks then permissions are approximated in sub-blocks of size 4 bytes in the leaf

table.

Termination Bug in mmpt insert. When we ran Tnt on mmpt insert, it

found a non-terminating execution. This bug is caused by calling mmpt insert

with a user segment whose length is not a multiple of 4. To illustrate, consider two

consecutive calls to mmpt insert just after initialization (found by Tnt). The

first call sets read permission for a user segment of 4 bytes with base address 0.

The second one sets the permission for a user segment of 3 bytes with base address

120

0. The first call terminates, while the second call runs into infinite recursion.

Figure 6.7 shows the state of memory table after first call.

Let us trace the code of mmpt insert line by line during the second call.

Procedures called by mmpt insert are summarized in Figure 6.8.

In the second call, mmpt insert is called with a (constant) pointer to the mmpt

structure, a base address base of 0, the address of the length variable len which

contains the length 3, a pointer to the root table, and level = 0 (signifying root

entry). (We omit the other, unimportant parameters.) At line 4, the insertion

routine checks that ∗len is not zero, that is, the current memory chunk needs

to be filled in the table. At line 5, the helper procedure make idx computes the

index of the entry in the root table which corresponds to base. This extracts the

top 10 bits of base, which turns out to be 0. At line 6, the last comparison in

the conditional checks whether the value of *len is greater than the block size

of the root entry (4MB). Since the length is 3, this check fails and control passes

to line 19. The conditional on line 19 passes, since the passed table is not a leaf

table, and the entry in the root table is a pointer to a mid-level table. (Recall

the configuration of the permission table after the first call from Figure 6.7.)

Now at line 20, mmpt insert makes a recursive call with a pointer to the

mid-level table that is pointed to by the zeroth entry of the root table, tab[idx].

The parameters base and len do not change, but level increases to 1, denoting

that the current table is a mid-level table. In this recursive call, the control again

comes to line 20, this time making another recursive call with a pointer to a leaf

table, and with level equal to 2.

In this second recursive call, the conditions at lines 6, 19, and 21 all fail

because the current table is a leaf table. Thus, control jumps to line 41. The for

loop at line 41 does not execute at all, since *len (which is equal to 3) is smaller

121

then the sub-block length (4 bytes) of the leaf table. Thus, control directly jumps

to line 50 and makes a recursive call with base 0, length 3, a pointer to the root

table, and level reset to 0. These are the same parameters which were passed

at the start of execution of the procedure mmpt insert. This causes an infinite

loop, as this recursion does not terminate.

The complexity of this infinite execution (there are 3 levels of recursive calls

involved) shows the utility of having a tool like Tnt check the executions for

possible non-termination.

Corrected mmpt insert. On inspection of the bug and the Mondriaan test

suite, we found that there is an unchecked assumption on the correct operation

of the program that the lengths of user segments are always a multiple of 4.

We put in this check in the update code. This time, Tnt timed out without

identifying any infinite execution. Since our implementation does not implement

a termination-check based acceleration, most of the time was spent in producing

longer and longer symbolic traces of recursive calls.

We then proved termination of the corrected version by hand. The proof of

termination involves a lexicographic ranking on the pair (∗len, 2 − level), as

on every recursive call, either the length goes down or if the length remains the

same, the distance of the level from the leaf tree goes down. The reasoning for

termination uses crucially the invariant that the length is always a multiple of 4

to rule out the previous infinite execution.

We believe this example is a good challenge problem for termination check-

ers. Unfortunately, well-documented limitations of current termination checkers

(to deal with bitwise operators, or shared data structures on the heap) make

it difficult to prove termination of this program automatically with the current

tools.

122

6.6 Acceleration for NonTerm

In this section we describe a practical extension for our non-termination checking

algorithm NonTerm shown in Section 6.3. We describe how to avoid redundant

non-termination checks by accelerating the traversal of terminating loops.

Given a lasso, the non-termination checking algorithm NonTermLasso, as

described in the previous section, can fail to return a positive result. For com-

plete checking algorithms, the failure is caused by the termination of the lasso.

Incomplete algorithms can produce an indefinite result, which leaves open the

possibility that the lasso may be terminating. Since the exploration of termi-

nating loops does not advances the search for infinite executions, we propose

a modification of NonTerm that removes such loops from consideration. See

Figure 6.10 for the modified statements.

If the lasso can be proven terminating no matter what the input is, we lead

the execution through the loop until it exits. In order words, we fully unwind

the loop by executing the loop sequence, and rely on the proof of termination to

guarantee the convergence of the unwinding. Thus, we eventually reach line 18.9.

The resulting sequence will be used to seed the selection of the next stem to be

considered, i.e., the next stem will be chosen to contain the sequence as a prefix.

Thus, NonTerm can reach interesting parts of code by passing across loops in

one step, without any interruption at each iteration.

If the termination property of the lasso cannot be determined, we continue

our search for non-terminating lassos. During the subsequent iterations of Non-

Term, we shall only consider lassos that have the current stem as a prefix. Thus,

we ensure that the search makes progress.

123

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

input

P : program

vars

s, τ, ℓ, ℓ′ : program state, transition, and control locations

stem, loop : sequences of transitions

begin

ℓ := ℓ0

Choose s ∈ V.X

stem := ǫ

loop := ǫ

try

repeat (∗ selecting stem ∗)

τ, 〈ℓ, s〉 := ChooseNext(ℓ, s)

stem := stem • τ

until ℓ ∈ L	 and Choose {true, false}

ℓ′ := ℓ (∗ fixing cutpoint location ∗)

repeat (∗ selecting loop ∗)

τ, 〈ℓ, s〉 := ChooseNext(ℓ, s)

loop := loop • τ

until ℓ = ℓ′ and Choose {true, false}

if NonTermLasso(stem, loop) then

s := initial state witnessing non-termination

return “non-terminating execution starts from s”

else

raise ChoiceFailure

catch ChoiceFailure do

backtrack

catch BacktrackingExhausted do

return “program terminates”

end.

Figure 6.2: Algorithm NonTerm for testing non-termination. The operator
• adds a transition at the end of a sequence. The functions Choose and
ChooseNext are backtrackable.

124

input

ℓ : control location

s : program state

vars

S : set of state-transition pairs

begin

S := {(τ, 〈ℓ′, s′〉) | τ = (ℓ, ρ, ℓ′) ∈ T and (s, s′) |= ρ}

return Choose S

end.

Figure 6.3: Auxiliary function ChooseNext for the nondeterministic selection
of an outgoing transition, a successor location and state. The function Choose

raises the ChoiceFailure exception when applied on the empty set. We im-
plicitly assume the fixed program P which determines the possible states s′ and
transitions τ .

input

S (x
x′) ≤ s : transition relation of the stem

Gx ≤ g ∧ x′ = Ux + u : transition relation of the loop

Tx ≤ t : template for recurrent set

vars

Φ : auxiliary constraint

s, s′ : program states – valuations of x and x′

begin

Φ := ∃Λ ≥ 0. ΛT =

(
G

TU

)

∧ Λt ≤

(
g

t − Tu

)

try

Choose (T ∗, t∗) |= Φ

if exist (s, s′) |= S (x
x′) ≤ s ∧ T ∗x′ ≤ t∗ then

return “recurrent set T ∗x ≤ t∗”

else

backtrack

catch ChoiceFailure do

return “no recurrent set for template Tx ≤ t”

end.

Figure 6.4: Auxiliary function NonTermLasso for checking non-termination of
linear arithmetic lassos.

125

Bits 5-0

Address (bits 31-0)

Root index (10) Leaf offset (6)Leaf index (6)Mid index (10)

Bits 21-12Bits 31-22 Bits 11-6

Figure 6.5: Modriaan permission table indexing

0

0

4MB

64B

64B

RRRRRRRRRRRRR

______________RR

R R R R R R R R

R R R R R R R R

R R R R R R R R

RRRRRRRRRRRRR

0

.

.

.

0 0

0

0

.

.

.

.

.

.

.

.

4MB

Leaf tables Mid level tables

Root table

Memory Range

4KB

Figure 6.6: Typical permission table generated by mmpt insert

0 0

.

.

.

0

Root table Leaf table

R_____________

Mid level table

.

.

.
.
.
.

Figure 6.7: Table state after first call of mmpt insert

126

tab base(struct mmpt* mmpt,int base,int level)

Returns the lower boundary of memory range corresponds to
the permission table of given level whose corresponding
memory range contains base

tab len(struct mmpt* mmpt,int level)

Returns the size of memory block corresponds to each entry
of permission table of given level.

tab addr(struct mmpt* mmpt, int base, int idx, int level)

Returns the lower boundary of memory range corresponds to
the entry at index idx in permission table of given level
whose corresponding memory range contains base

tab nentries(struct mmpt* mmpt,int level)

Returns number of entries in the table of given level.

subblock len(struct mmpt* mmpt,int level)

Returns sub block size of the level.

make idx(struct mmpt* mmpt,int base,int level)

Returns the index of first entry in permission table
whose corresponding memory range contains base

uentry is data(struct mmpt* mmpt,int entry)

Checks if the entry in the permission table is a pointer
or a permission vector.

entry prot(mmpt, permission entry, i)
Returns ith permission field in permission entry

Figure 6.8: Summary of functions called by mmpt insert

127

1. static void

2. _mmpt_insert(struct mmpt* mmpt, unsigned long base, unsigned long* len, int prot,

tab_t* tab, int level, int* nonzero, int allocate_ok) {

3. unsigned int idx; tab_t entry;

4. if(*len == 0) return;

5. idx = make_idx(mmpt, base, level);

6. if(level < 2 && base == tab_base(mmpt, base, level + 1) && *len >= tab_len(mmpt, level + 1)) {

// CASE A: Upper level, new region is aligned & spans at least one entry

7. unsigned int entry_len;

8. if(tab[idx] && !uentry_is_data(mmpt, tab[idx])) {

9. look_for_nonzero(mmpt, (tab_t*)tab[idx], level, nonzero);

10. table_free(mmpt, (void*)tab[idx], level + 1);

11. tab[idx] = 0;

12. }

13. entry = tab[idx];

14. entry_len = make_entry(mmpt, base, *len, prot, level, &entry);

15. tab[idx] = entry;

16. *len -= entry_len;

17. base += entry_len;

18. _mmpt_insert(mmpt, base, len, prot, mmpt->tab, 0, nonzero, allocate_ok);

19. } else if(level < 2 && tab[idx] && !uentry_is_data(mmpt, tab[idx])) {

// CASE B: Upper level, pointer entry

// Recurse down through pointer

20. _mmpt_insert(mmpt, base, len, prot, (tab_t*)tab[idx], level + 1, nonzero, allocate_ok);

21. } else if(level < 2 && ((base & (subblock_len(mmpt, level)-1)) != 0 || *len < subblock_len(mmpt, level))) {

// CASE C: Upper level, NULL or data entry, new region doesn’t fit in

// subblock (not aligned or not big enough)

22. unsigned long upper_data_entry = tab[idx];

23. unsigned int i;

24. *nonzero |= (tab[idx] != 0);

25. if(allocate_ok) {

26. unsigned long sub_len;

27. tab[idx] = (tab_t)xmalloc(tab_nentries(mmpt, level + 1) * sizeof(*mmpt->tab));

28. memset((tab_t*)tab[idx], 0, tab_nentries(mmpt, level + 1) * sizeof(*mmpt->tab));

29. for(i = 0; i < 1<<mmpt->lg_num_subblock[level]; ++i) {

30. sub_len = subblock_len(mmpt, level);

31. _mmpt_insert(mmpt, tab_base(mmpt, base, level+1) + i * subblock_len(mmpt, level), &sub_len,

entry_prot(mmpt, upper_data_entry, i), (tab_t*)tab[idx], level + 1, nonzero, allocate_ok);

32. }

33. _mmpt_insert(mmpt, base, len, prot, (tab_t*)tab[idx], level + 1, nonzero, allocate_ok);

34. } else {

35. unsigned int tlen = tab_len(mmpt, level + 1);

// CASE D: Upper level, NULL or data entry, new region doesn’t fit in

// subblock (not aligned or not big enough), and not

// allocating new tables

36. if(*len < tlen) return;

37. *len -= tlen;

38. _mmpt_insert(mmpt, tab_addr(mmpt, base, idx+1, level), len, prot,

mmpt->tab, 0, nonzero, allocate_ok);

39. }

40. } else {

// CASE E: Any level, NULL or data entry, fill in the rest of

// this table and recurse for the remainder if necessary.

41. for(; *len >= subblock_len(mmpt, level)

&& idx < tab_nentries(mmpt, level); idx++) {

42. int entry_len;

43. *nonzero |= (tab[idx] != 0);

44. entry = tab[idx];

45. entry_len = make_entry(mmpt, base, *len, prot, level, &entry);

46. tab[idx] = entry;

47. *len -= entry_len;

48. base += entry_len;

49. }

50. _mmpt_insert(mmpt, base, len, prot, mmpt->tab, 0, nonzero, allocate_ok);

51. }

52. }

Figure 6.9: Mondriaan insertion code

128

18.1

18.2

18.3

18.4

18.5

18.6

18.7

18.8

18.9

18.10

18.11

else if TermLasso(stem, loop) then

repeat (∗ unwinding loop ∗)

S := {s′ | s
loop
−−→ s′}

if S 6= ∅ then

Choose s ∈ S

stem := stem • loop

else

loop := ǫ

break

done

else

Figure 6.10: Acceleration of the algorithm NonTerm for testing termination.
Lines 18.1—18.11 replace line 18 in Figure 6.2. We unwind the loop part of
terminating lasso without intermediate checks for non-termination. Recall that
the variable s holds the value of the current program state, which successors are
computed during loop unwinding.

129

References

[AGT08] S. Anand, P. Godefroid, and N. Tillmann. “Demand-Driven Compo-
sitional Symbolic Execution.” In TACAS, 2008.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

[BCE08] P. Boonstoppel, C. Cadar, and D. Engler. “RWset: Attacking Path
Explosion in Constraint-Based Test Generation.” In TACAS, 2008.

[BCH04] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar.
“Generating Tests from Counterexamples.” In ICSE, 2004.

[BDE07] M. Berkelaar, J. Dirks, K. Eikland, and P. Notebaert. “lp solve
(5.5.0.10).” 2007.

[BKM02] C. Boyapati, S. Khurshid, and D. Marinov. “Korat: automated testing
based on Java predicates.” In ISSTA, 2002.

[Blo06] Joshua Bloch. “Nearly all binary searches and mergesorts are broken.”,
June 2006. http://googleresearch.blogspot.com/2006/06/
extra-extra-read-all-about-it-nearly.html.

[BMS05] A. Bradley, Z. Manna, and H. Sipma. “The Polyranking Principle.”
In ICALP, pp. 1349–1361, 2005.

[CBR01] E.M. Clarke, A. Biere, R. Raimi, and Y. Zhu. “Bounded Model Check-
ing Using Satisfiability Solving.” Formal Methods in System Design,
19(1):7–34, 2001.

[CDE08] C. Cadar, D. Dunbar, and D.R. Engler. “KLEE: Unassisted and Au-
tomatic Generation of High-Coverage Tests for Complex Systems Pro-
grams.” In OSDI, 2008.

[CGP06] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. “EXE:
automatically generating inputs of death.” In CCS, 2006.

[CKS05] B. Cook, D. Kroening, and N. Sharygina. “Cogent: Accurate Theo-
rem Proving for Program Verification.” In CAV, 2005.

[CL05] D. Coppit and J. Lian. “yagg: an easy-to-use generator for structured
test inputs.” In ASE, 2005.

130

[Cla76] L. Clarke. “A system to generate test data and symbolically execute
programs.” IEEE Trans. Software Eng., 2:215–222, 1976.

[CLO07] J. Clause, W. Li, and A. Orso. “Dytan: A Generic Dynamic Taint
Analysis Framework.” In ISSTA, 2007.

[Cou05] P. Cousot. “Proving Program Invariance and Termination by Para-
metric Abstraction, Lagrangian Relaxation and Semidefinite Program-
ming.” In VMCAI, 2005.

[CPR06] B. Cook, A. Podelski, and A. Rybalchenko. “Termination proofs for
systems code.” In PLDI, 2006.

[CS02] M. Colón and H. Sipma. “Practical Methods for Proving Program
Termination.” In CAV, pp. 442–454, 2002.

[CSS03] M. Colón, S. Sankaranarayanan, and H.B. Sipma. “Linear Invariant
Generation Using Non-linear Constraint Solving.” In CAV, 2003.

[CVE03] “CVE-2003-0466.” 2003.

[Den76] D. E. Denning. “A Lattice Model of Secure Information Flow.” Com-
mun. ACM, 19(5):236–243, 1976.

[DRS03] N. Dor, M. Rodeh, and S. Sagiv. “CSSV: towards a realistic tool for
statically detecting all buffer overflows in C.” In PLDI, 2003.

[FOB05] J. C. Foster, V. Osipov, and N. Bhalla. Buffer Overflow Attacks. Syn-
gress, 2005.

[GD07a] V. Ganesh and D. L. Dill. “A Decision Procedure for Bit-Vectors and
Arrays.” In CAV, 2007.

[GD07b] V. Ganesh and D.L. Dill. “A Decision Procedure for Bit-Vectors and
Arrays.” In CAV, 2007.

[GG75] J. B. Goodenough and S. L. Gerhart. “Toward a Theory of Test Data
Selection.” IEEE Trans. Software Eng., 1(2):156–173, 1975.

[GHJ07] A. Groce, G. J. Holzmann, and R. Joshi. “Randomized Differential
Testing as a Prelude to Formal Verification.” In ICSE, 2007.

[GHM08] A. Gupta, T. Henzinger, R. Majumdar, A. Rybalchenko, and R. Xu.
“Proving non-termination.” In POPL, pp. 147–158, 2008.

131

[GKS05] P. Godefroid, N. Klarlund, and K. Sen. “DART: directed automated
random testing.” In PLDI, 2005.

[GLM07] P. Godefroid, M. Y. Levin, and D. Molnar. “Active Property Check-
ing.” Technical report, Microsoft, 2007.

[GLM08] P. Godefroid, M.Y. Levin, and D. Molnar. “Automated Whitebox Fuzz
Testing.” In NDSS, 2008.

[God07] P. Godefroid. “Compositional Dynamic Test Generation.” In POPL.
ACM, 2007.

[Hol95] C. Holzbaur. OFAI clp(q,r) Manual, Edition 1.3.3. Austrian Research
Institute for Artificial Intelligence, Vienna, 1995. TR-95-09.

[JK97] R. Jones and P. Kelly. “Backwards-compatible bounds checking for
arrays and pointers in C programs.” In Third International Workshop
on Automated Debugging, pp. 155–167. Linkoping University Electronic
Press, 1997.

[JM05] R. Jhala and R. Majumdar. “Path slicing.” In PLDI 05. ACM, 2005.

[Joh75] S.C. Johnson. “YACC – Yet another compiler-compiler.” Bell Labs
Tehnical Report, (32), 1975.

[JSS07] P. Joshi, K. Sen, and M. Shlimovich. “Predictive testing: amplifying
the effectiveness of software testing.” In ESEC/SIGSOFT FSE, 2007.

[Kap06] D. Kapur. “Automatically Generating Loop Invariants Using Quan-
tifier Elimination.” Technical Report 05431 (Deduction and Applica-
tions), IBFI Schloss Dagstuhl, 2006.

[Kin76] J. C. King. “Symbolic Execution and Program Testing.” Commun.
ACM, 19(7):385–394, 1976.

[KL88] B. Korel and J. Laski. “Dynamic Program Slicing.” Information Pro-
cessing Letters, 29:155–163, 1988.

[KM04] S. Khurshid and D. Marinov. “TestEra: Specification-Based Testing
of Java Programs Using SAT.” Autom. Softw. Eng., 11(4):403–434,
2004.

[Knu97] D. Knuth. The Art of Computer Programming, Volume 3: Sorting and
Searching. Addison-Wesley, 1997.

132

[KY94] B. Korel and S. Yalamanchili. “Forward Computation of Dynamic
Program Slices.” In ISSTA, 1994.

[LA03] E. Larson and T. Austin. “High Coverage Detection of Input-Related
Security Faults.” In USENIX, 2003.

[LS75] M.E. Lesk and E. Schmidt. “Lex – A lexical analyser generator.” Bell
Labs Tehnical Report, (39), 1975.

[LS06] R. Lämmel and W. Schulte. “Controllable Combinatorial Coverage in
Grammar-Based Testing.” In TestCom, 2006.

[Mau90] P. M. Maurer. “Generating Test Data with Enhanced Context-Free
Grammars.” IEEE Software, 7(4):50–55, 1990.

[MPL04] W. Masri, A. Podgurski, and D. Leon. “Detecting and Debugging
Insecure Information Flows.” In ISSRE, 2004.

[MSO06] “CVE-2006-5994.” 2006.

[Muc97] S. Muchnick. Advanced Compiler Design and Implementation.
Morgan-Kaufman, 1997.

[MX07] R. Majumdar and R. Xu. “Directed test generation with symbolic
grammars.” In ASE, 2007.

[MX09] R. Majumdar and R. Xu. “Reducing Test Inputs Using Information
Partitions.” In CAV, 2009.

[Mye79] G.J. Myers. The art of software testing. Wiley, 1979.

[Nis02] “The economic impacts of inadequate infrastructure for software test-
ing.” Technical report, National Institute of Standards and Technol-
ogy, 2002.

[NMR02] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. “CIL: In-
termediate Language and Tools for Analysis and Transformation of C
Programs.” In CC, 2002.

[NS07] N. Nethercote and J. Seward. “Valgrind: a framework for heavyweight
dynamic binary instrumentation.” In PLDI, 2007.

[RL04] O. Ruwase and M. Lam. “A Practical Dynamic Buffer Overflow De-
tector.” In NDSS, 2004.

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

133

[Sip97] M. Sipser. “Introduction to the Theory of Computation.” pp. 91–101,
1997.

[SMA05] K. Sen, D. Marinov, and G. Agha. “CUTE: a concolic unit testing
engine for C.” In ESEC/SIGSOFT FSE, 2005.

[SN05] J. Seward and N. Nethercote. “Using Valgrind to detect undefined
value errors with bit-precision.” In USENIX, 2005.

[SSM04] S. Sankaranarayanan, H.B. Sipma, and Z. Manna. “Non-linear loop
invariant generation using Gröbner bases.” In POPL, 2004.

[ST85] D. Sleator and R. Tarjan. “Self-Adjusting Binary Search Trees.” J.
ACM, 32(3):652–686, 1985.

[Tip95] F. Tip. “A Survey of Program Slicing Techniques.” Journel of Pro-
gramming Languages, 3:121–189, 1995.

[VPK04] W. Visser, C. S. Pasareanu, and S. Khurshid. “Test input generation
with java PathFinder.” In ISSTA, pp. 97–107, 2004.

[VPP06] W. Visser, C. S. Pasareanu, and R. Pelánek. “Test input generation
for java containers using state matching.” In ISSTA, 2006.

[WCA02] E. Witchel, J. Cates, and K. Asanović. “Mondrian memory protec-
tion.” In Proc. ASPLOS, pp. 304–316, 2002.

[Wei79] M. Weiser. “Program Slices: Formal, Psychological, and Practical
Investigations of an Automatic Program Abstraction Method.” Ph.D
Thesis, 1979.

[WFB00] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. “A First Step
Towards Automated Detection of Buffer Overrun Vulnerabilities.” In
NDSS, 2000.

[Wit04] E. Witchel. Mondriaan Memory Protection. PhD thesis, Mas-
sachusetts Institute of Technologys, 2004.

[XA05] Y. Xie and A. Aiken. “Saturn: A SAT-Based Tool for Bug Detection.”
In CAV, pp. 139–143, 2005.

[XCE03] Y. Xie, A. Chou, and D. Engler. “ARCHER: using symbolic, path-
sensitive analysis to detect memory access errors.” In ESEC/SIGSOFT
FSE, 2003.

134

[XMG08] R. Xu, R. Majumdar, and P. Godefroid. “Testing for Buffer Overflows
with Length Abstraction.” In ISSTA, 2008.

[ZLL04] M. Zitser, R. Lippmann, and T. Leek. “Testing static analysis tools us-
ing exploitable buffer overflows from open source code.” In SIGSOFT
FSE, 2004.

[ZLL05] M. Zhivich, T. Leek, and R. Lippmann. “Dynamic Buffer Overflow
Detection.” In BUGS, 2005.

135

